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ABSTRACT 
Electronic mail offers the promise of rapid communication of 
essential information. However, electronic mail is also used 
to send unwanted messages. A variety of approaches can learn 
a profile of a user’s interests for filtering mail. Here, we 
report on a usability study that investigates what types of 
profiles people would be willing to use to filter mail. 

Keywords 
Mail Filtering; User Studies 

1. INTRODUCTION 
While electronic mail offers the promise of rapid 
communication of essential information, it also facilitates 
transmission of unwanted messages such as advertisements, 
solicitations, light bulb jokes, chain letters, urban legends, 
etc. Software that automatically sorts mail into categories 
(e.g., junk, talk announcements, homework questions) would 
help automate the process of sorting through mail to 
prioritize messages or suggest actions (such as deleting junk 
mail or forwarding urgent messages to a handheld device). 
Such software maintains a profile of the user’s interests. 
Here, we investigate the representation of user profiles from a 
usability point of view. The goal of this paper is investigate 
alternative representations of user profiles and show how 
these alternatives affect the willingness of users to accept an 
automated system for filtering mail. In particular, alternative 
representations of a profile may be equally accurate, yet 
people may have more confidence in a profile presented in 
one representation over another. 

Many commercially available mail-filtering programs that 
allow a user to inspect the representation are based on rules 
that look for patterns in the text. Rule learning programs 
such as Ripper could easily learn rules for such a 
representation [Cohen, 19961. Other approaches to 
classifying text such as electronic mail include using linear 
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models [e.g., Lewis, Schapire, Callan and Papka, 1996; 
Dumais, Platt, Heckerman and Sahami, 19981 learned by a 
perception or support vector machine. NaWe Bayesian 
classifiers [Duda & Hart, 19731 have also proved effective in 
some applications [Pazzani & Billsus, 1997; Sahami, 
Dumais, Heckerman, and Horvitz, 19981. 

Some of the earliest text classification methods (e.g., Rocchio, 
197 1) were based upon finding the centroid of examples of 
each class. Such methods are often competitive with more 
recent approaches to text classification. Here, we introduce a 
new prototype representation for profiles and show that it is 
as accurate as alternative approaches and that users place 
more confidence in the profiles in this representation than 
rule-based representation or linear models. 

To illustrate the three alternative representations, we 
collected a sample of 193 mail messages sent to a faculty 
member, of which 100 were unwanted and 93 were important. 
This task is more difficult than junk mail filtering because the 
unwanted mail also included unwanted items such as talk 
announcements, grant opportunities, and calls for papers that 
the faculty member was not interested in that were similar in 
style to important messages. 

2. BACKGROUND: RULES, LINEAFt 
MODELS, AND PROTOTYPES FOR MAIL 
FILTERING 
Rules are the most commonly used representation for mail 
filtering profiles that are hand-coded. Cohen [ 19961 argues 
for learning this type of representation: “the greater 
comprehensibility of the rules may be advantageous in a 
system that allows users to extend or otherwise modify a 
learned classier.” Figure 1 presents the set of rules learned 
with Ripper on all 193 examples of mail messages. 
Discard if 

The BODY contains “oul” & “internet’ 
The BODY contains “free” & “call 
The BODY contains “http” & “corn” 
The BODY contains “UCI” & “available” 
The BODY contains “all” & “our” & “not’ 
The BODY contains “business” Ei “you” 
The BODY contains “by” & “Humanities” 
The BODY contains “ovel” & “you” & “can” 

Otherwise Forward 

Figure 1. Rules learned by Ripper for filtering e-mail. 
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Linear models have been shown to form accurate profiles of 
user interests [e.g., Lewis, Schapire, Callan and Papka, 
19961. Figure 2 shows a linear model learned by a perceptron 
from the mail examples. The 32 most informative terms were 
used as binary variables. The linear model fewer than 32 
variables because some variables had coefficients equal to 0. 

IF ( 1l”remove” + 1O”internet” + 6”http” + 7”call” + 7”business” 
+Vcenter” +3”please” + 3”marketing” + 2”money” + 1”~s” + 
1 “reply” + 1 “my” + 1 “free” 
-14”ICS” - 1O”me” - 6”science” - 6Yhanks” - 6”meeting” - 
~problem”-fi”begins” - 5”[” - 3”mair - 3”com” - 2”~” - 
P”talk” - 2”homewor-k”-1”out” - IV” - 1”email” - 1”all” - 1) ~0 

THEN Discard 
ELSE Forward 

Figure 2. A linear model for mail filtering learned by a 
perceptron. 

The linear model can be viewed as summing evidence for and 
against discarding a mail message. Some of the signs of the 
coefficients in the equations in Figure 2 may be 
counterintuitive. For example, “corn” has a negative 
coefficient indicating the presence of this term is evidence for 
forwarding a message, but this term occurs much more 
frequently in messages that should be deleted. Pazzani & Bay 
[1999] report that people prefer linear models where the sign 
of each coefficient in the equation indicates the direction of 
the correlation between the explanatory variable and the 
dependant variable. 

The third representation we investigate is a “prototype” 
representation, which can be viewed as summing evidence for 
or against certain decisions like the perceptron. However, 
rather than having weights and thresholds, the 
categorizations are made by a similarity comparison between 
the example and a prototype. Figure 3 shows the prototype 
representation learned from the training examples. Later in 
the paper, we describe the prototype learning algorithm in 
more detail. The prototype classification process we consider 
simply categorizes an example to the class whose prototype 
has the most terms in common with the example. 
IF the message contains more of 

“papers” “particular” “business” “internet” “http” “money” us” 
THAN 

“I “me” “Re:” “,-&enoe” “problem” y&l “p&II “begins” 

THEN Discard 
ELSE Forward 

Figure 3. A prototype model for mail filtering 

In this paper, we also address whether profiles should use 
individual words as terms or should also consider pairs of 
terms. The general finding in a number of papers has been 
that using pairs of words as terms has a slight positive or no 
effect on accuracy [e.g., Cohen, 19951. However, we 
speculate that if the profile is to be displayed to a user, then 
the user would prefer profiles with word pairs. In previous 
research on profiles learned for restaurant recommendations 
[Pazzani, in press], word pairs made more sense to us because 
they included terms such as “goat cheese” and “prime rib” 
rather than just “goat” and “prime”. Here we investigate this 
hypothesis empirically on a group of subjects. Figure 4 
shows a prototype that includes word pairs as terms learned 

from the same e-mail messages as Figure 3. Space limitations 
prohibit us from showing rule or linear models with word 
pairs. 
IF the message contains more of 

“ser&e“ “us” “marketing” “financial” “the UCI” 
“http:// www” “you can” “removed from” “corn” 

THAN 
“I” “learning” “me” “Subject: Re:” “function” 
“KS’ “talk begins” “computer science” “the end” 

THEN Discard 
ELSE Forward 

Figure 4. A prototype model with word pairs as terms. 

The final issue we investigate empirically is whether a person 
can detect whether the profile in a particular representation is 
accurate. We intentionally created inaccurate profiles by 
introducing noise into the classification of the training 
examples. We achieved this by inverting the categorization 
of 20% of the examples chosen at random. These profiles 
make mistakes on 20% of the original e-mail. 

The goal of this paper is to explore alternative 
representations of user profiles. We speculate that various 
representations and representational changes affect the 
willingness of people to use the results of text mining 
algorithms to create understandable profiles of a user’s 
interests. In the next section, we treat these intuitions as 
hypotheses and conduct a study that evaluates the following 
hypotheses: 

1. 

2. 

3. 

4. 

3. 

Prototype representations are more acceptable to users 
than rule representations. 
Prototype representations are more acceptable to users 
than linear model representations 
Using word pairs as terms increases the acceptance of 
profiles (for linear models, prototypes, and rules). 
Inaccurate profiles (learned from noisy training data) are 
less acceptable to users than accurate ones (for linear 
models, prototypes, and rules). 

MAIL FILTERING PROFILES: AN 
EXPERIMENT 
In this section, we report on a study in which subjects were 
first asked to filter mail manually, and then were asked to 
judge the various profiles learned from the data that were 
shown in the figures in the previous section. We decided to 
focus on a two-choice task (i.e., either forward or discard 
mail) rather than filing to many different folders to establish 
results on people performing the simplest case before 
addressing the more complex tasks. 
Subjects. The subjects were 133 male and female students 
majoring in Information and Computer Science at the 
University of California, Irvine who participated in this 
experiment to receive extra credit. 
Stimuli. The stimuli consisted of 193 mail messages and 9 
mail filtering profiles. The profiles were generated by 
Ripper, a perceptron, and a prototype learner. For each 
learner, they learned once with a representation that included 
only individual words, once with a representation that 
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included word pairs as terms, and once with word pairs learned 
from data with 20% noise added. 
Procedures. Subjects were asked to imagine that they 
were the assistant of a faculty member and their job was to 
decide whether to forward or discard mail messages sent to the 
faculty member. An example of the stimuli is shown in Figure 
5. 

Figure 5. An example of unwanted electronic mail. 
In the first phase of the experiment, each subject was shown 
40 mail messages one at a time. For each message, the 
subject indicated whether the message should be forwarded or 
discarded and received feedback on whether the decision was 
correct. The mail messages were selected randomly without 
replacement. We recorded the number of errors made by 
subjects on each block of ten messages. 

In the final phase of the experiment, each subject was shown 
the nine mail filtering profiles one at a time in random order 
and asked to indicate on a scale from -3 to +3 how willing 
they would be to use that profile to perform the same 
decisions that they had just made for forwarding or 
discarding mail. They indicated a rating by selecting a radio 
button. Next they clicked on “Record Rating” and were 
shown another profile. The radio button was reset to 0 before 
displaying the next profile. This continued until the subject 
rated all 9 profiles. Figure 6 shows an example display. We 
recorded the rating of the subject on each profile to allow us 
to determine what types of profiles subjects would be most 
willing to use. 

Results. An analysis of subject errors showed that subjects 
improved by getting feedback. In the first block of ten 
messages, 15 of the 133 subjects made 0 or 1 errors. In the 
next block, 66 subjects improved to this level, followed by 
83 on the third block of ten and 8 1 on the fourth block. 

The following differences were highly significant (at least at 
the .005 level). 
. Prototype representations with word pairs received 

higher ratings than rule representations with word pairs 
t(132) = 5.64. 

. Inaccurate prototype models (learned from noisy training 
data) are less acceptable to users than accurate ones 
t(l32)= 4.88. 

Algorithm 1 Mean Rating 

Rules 0.015 

Rules (Pairs) -0.135 

Rules (Noise) 
I 

1 -0.105 I 

Linear Model 0.421 

Linear Model (Pairs) 0.518 

Linear Model (Noise) -0.120 

Prototype 0.677 

Prototype (Pairs) 1.06 

Prototype (Noise) 0.195 

Table 1. Mean rating of subjects on each type of mail profile. 

The following differences were significant (at least at the .05 
level). 
. Prototype representations with word pairs received 

higher ratings than linear model representations with 
word pairs t(132) = 2.84. 

. Inaccurate linear models are less acceptable to users than 
accurate ones. t( 132)=2.99. 

The following difference was marginally significant (between 
the 0.1 and .0.5 level). 
. For prototype representations, using word pairs as terms 

increases user ratings: t( 132) = 2.37. 

4. DISCUSSION 
The results of the study confirm many of the intuitions. We 
had initially planned to focus only on rule representations in 
this study, exploring the differences between individual words 
and words pairs. However, after seeing the results of Ripper 
(and other rule learners) under a wide variety of parameter 
settings, it became apparent that although it is easy to 
understand how the learned rules classify text, the learned 
rules do not seem credible. We believe this is because subjects 
can easily imagine counterexamples to any rule. For 
example, rules that filter out mail that contains the term 
“xxx” assuming it is pornographic, fail on mail about 
“Superbowl XXX.” Subjects greatly preferred prototypes to 
rules, and subjects did not prefer accurate rules to less accurate 
rules learned on noisy data. Increasing the representational 
power of the learned rules to include word pairs did not help 
increase user confidence in the rules. 

The average rating of subjects for each type of mail profile is 
shown in Table 1. We performed a paired one-tailed t-test to 
determine which of the eight hypotheses discussed in Section 
2 were supported by the experimental findings. We used a 
Bonferroni adjustment to account for the fact that we are 
making 8 comparisons. 

Figure 6. Subjects provide feedback on mail profiles. 

The prototype representation with word pairs received higher 
ratings than al1 other profiles. The differences between this 
profile and linear models with word pairs, rule models with 
word pairs, and prototype models learned from noisy data 
were all significant. The difference between prototype 
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models with only individual words as terms (0.677) and 
prototypes with word pairs (1.06) is only marginally 
significant in the context of the 8 comparisons being done in 
this study. The linear model is not as acceptable to users as 
the prototype model’ However, users were able to 
distinguish a linear model that was accurate on the training 
data to one that was learned from noisy data. This may be the 
result of noise influencing the terms. We don’t believe users 
can distinguish small changes in coefficients that could affect 
the accuracy. 

5. LEARNING TEXT CLASSIFICATION 
PROTOTYPES 
Subjects in our study had a preference for the prototype 
representation for text classifiers. We feel this is a useful 
representation because it has a relatively small number of 
meaningful words for each class. Here, we describe how the 
prototype representation is constructed. Initial attempts to 
create prototypes by simply selecting the k words with the 
highest value according to some criteria (e.g., information 
gain) did not result in profiles that were accurate classifiers. 
We adopted a genetic algorithm approach to create a 
prototype for each class. 

To learn a pair of prototypes for text classification, first each 
training example is converted to a bit vector of length 128 
where each bit represents the presence or absence of an 
individual word. The 128 most informative terms (i.e., those 
that best distinguish positive examples of discard from 
negative examples) are selected binary features. An 
individual in the population is represented as a bit vector of 
length 256, the first 128 bits representing the prototype for 
discard and the remaining 128 representing a prototype for 
discard. In the individual, a 1 indicates that the term is 
present in the prototype and a 0 represents that it is not 
present in the prototype. The classification procedure for 
prototypes simply counts the number of times a 1 appears in 
the example (indicating that the term is present in the 
example) and a 1 occurs in the corresponding location of the 
discard and forward prototypes. If there are more terms in 
common with the discard prototype than the forward 
prototype, the message is classified as discard. Otherwise, it 
is classified as forward. 

The genetic algorithm operates by first initializing the 
population to 100 individuals. An individual of the initial 
population is formed by concatenating a randomly selected 
positive example with a randomly selected negative example. 
Each individual is then scored with a fitness function that 
simply checks for accuracy on the training example. To 
produce the next generation, the following procedure is used. 

A caution on comparisons between representations is in 
order. In particular, there may be better ways to visualize a 
linear model for the user. For example, we could display 
words with positive coefficients in green and negative 
coefficients in red, and represent the magnitude of the 
coefficient by the brightness of the color. 

Two individuals are selected from the population with a 
probability proportional to the individual fitness. Next a 
new individual is created through application of the crossover 
operator and a mutation operator (with a bit replaced with a 
random bit with a probability of 0.005). Once 100 new 
individuals are created, the 100 most fit of the new and 
previous generation are retained. The genetic algorithm is 
allowed to run until 10 generations produce no improvement 
in the fitness function or for 100 generations. The fittest 
individual is returned. Experiments with this algorithm 
showed that it is comparable in accuracy to other models, 
such as Rocchio’s method and a na’ive Bayesian classifier. 

One drawback of the prototype representation involves the 
ease with which a user may edit the prototype representation. 
In particular, it would be hard for a user to anticipate the 
effects of adding or deleting a term from a prototype. An 
editing 
environment in which these effects are easily visualized on a 
training set is planned. 
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7. CONCLUSION 
We have explored factors that affect the user preferences of 
automatically learned mail filtering profiles. By asking 
subjects to rate learned profiles that automate a task that the 
subjects had learned to perform, we found that subjects have 
little confidence in learned rules for text classification. A 
prototype representation was developed, and experiments 
showed that it is competitive in accuracy with other text 
classifiers but more readily accepted by users. In addition, the 
findings suggest that using word pairs as terms may improve 
the user acceptance of learned prototype profiles. 
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