
Representation of Electronic Mail Filtering Profiles:
A User Study

Michael J. Pazzani
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697
+l 949 824 5888

pazzani @ ics.uci.edu

ABSTRACT
Electronic mail offers the promise of rapid communication of
essential information. However, electronic mail is also used
to send unwanted messages. A variety of approaches can learn
a profile of a user’s interests for filtering mail. Here, we
report on a usability study that investigates what types of
profiles people would be willing to use to filter mail.

Keywords
Mail Filtering; User Studies

1. INTRODUCTION
While electronic mail offers the promise of rapid
communication of essential information, it also facilitates
transmission of unwanted messages such as advertisements,
solicitations, light bulb jokes, chain letters, urban legends,
etc. Software that automatically sorts mail into categories
(e.g., junk, talk announcements, homework questions) would
help automate the process of sorting through mail to
prioritize messages or suggest actions (such as deleting junk
mail or forwarding urgent messages to a handheld device).
Such software maintains a profile of the user’s interests.
Here, we investigate the representation of user profiles from a
usability point of view. The goal of this paper is investigate
alternative representations of user profiles and show how
these alternatives affect the willingness of users to accept an
automated system for filtering mail. In particular, alternative
representations of a profile may be equally accurate, yet
people may have more confidence in a profile presented in
one representation over another.

Many commercially available mail-filtering programs that
allow a user to inspect the representation are based on rules
that look for patterns in the text. Rule learning programs
such as Ripper could easily learn rules for such a
representation [Cohen, 19961. Other approaches to
classifying text such as electronic mail include using linear

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted withaut fee provided that copies
are not made or distributed for prolit or commercial advantage and that
copies hear this notice and the fill citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specilic permission and/or a fee.
WI 2000 New Orleans LA USA
Copyright ACM 2000 I-581 13-134~8/00/1...$5.00

models [e.g., Lewis, Schapire, Callan and Papka, 1996;
Dumais, Platt, Heckerman and Sahami, 19981 learned by a
perception or support vector machine. NaWe Bayesian
classifiers [Duda & Hart, 19731 have also proved effective in
some applications [Pazzani & Billsus, 1997; Sahami,
Dumais, Heckerman, and Horvitz, 19981.

Some of the earliest text classification methods (e.g., Rocchio,
197 1) were based upon finding the centroid of examples of
each class. Such methods are often competitive with more
recent approaches to text classification. Here, we introduce a
new prototype representation for profiles and show that it is
as accurate as alternative approaches and that users place
more confidence in the profiles in this representation than
rule-based representation or linear models.

To illustrate the three alternative representations, we
collected a sample of 193 mail messages sent to a faculty
member, of which 100 were unwanted and 93 were important.
This task is more difficult than junk mail filtering because the
unwanted mail also included unwanted items such as talk
announcements, grant opportunities, and calls for papers that
the faculty member was not interested in that were similar in
style to important messages.

2. BACKGROUND: RULES, LINEAFt
MODELS, AND PROTOTYPES FOR MAIL
FILTERING
Rules are the most commonly used representation for mail
filtering profiles that are hand-coded. Cohen [19961 argues
for learning this type of representation: “the greater
comprehensibility of the rules may be advantageous in a
system that allows users to extend or otherwise modify a
learned classier.” Figure 1 presents the set of rules learned
with Ripper on all 193 examples of mail messages.
Discard if

The BODY contains “oul” & “internet’
The BODY contains “free” & “call
The BODY contains “http” & “corn”
The BODY contains “UCI” & “available”
The BODY contains “all” & “our” & “not’
The BODY contains “business” Ei “you”
The BODY contains “by” & “Humanities”
The BODY contains “ovel” & “you” & “can”

Otherwise Forward

Figure 1. Rules learned by Ripper for filtering e-mail.

202

Linear models have been shown to form accurate profiles of
user interests [e.g., Lewis, Schapire, Callan and Papka,
19961. Figure 2 shows a linear model learned by a perceptron
from the mail examples. The 32 most informative terms were
used as binary variables. The linear model fewer than 32
variables because some variables had coefficients equal to 0.

IF (1l”remove” + 1O”internet” + 6”http” + 7”call” + 7”business”
+Vcenter” +3”please” + 3”marketing” + 2”money” + 1”~s” +
1 “reply” + 1 “my” + 1 “free”
-14”ICS” - 1O”me” - 6”science” - 6Yhanks” - 6”meeting” -
~problem”-fi”begins” - 5”[” - 3”mair - 3”com” - 2”~” -
P”talk” - 2”homewor-k”-1”out” - IV” - 1”email” - 1”all” - 1) ~0

THEN Discard
ELSE Forward

Figure 2. A linear model for mail filtering learned by a
perceptron.

The linear model can be viewed as summing evidence for and
against discarding a mail message. Some of the signs of the
coefficients in the equations in Figure 2 may be
counterintuitive. For example, “corn” has a negative
coefficient indicating the presence of this term is evidence for
forwarding a message, but this term occurs much more
frequently in messages that should be deleted. Pazzani & Bay
[1999] report that people prefer linear models where the sign
of each coefficient in the equation indicates the direction of
the correlation between the explanatory variable and the
dependant variable.

The third representation we investigate is a “prototype”
representation, which can be viewed as summing evidence for
or against certain decisions like the perceptron. However,
rather than having weights and thresholds, the
categorizations are made by a similarity comparison between
the example and a prototype. Figure 3 shows the prototype
representation learned from the training examples. Later in
the paper, we describe the prototype learning algorithm in
more detail. The prototype classification process we consider
simply categorizes an example to the class whose prototype
has the most terms in common with the example.
IF the message contains more of

“papers” “particular” “business” “internet” “http” “money” us”
THAN

“I “me” “Re:” “,-&enoe” “problem” y&l “p&II “begins”

THEN Discard
ELSE Forward

Figure 3. A prototype model for mail filtering

In this paper, we also address whether profiles should use
individual words as terms or should also consider pairs of
terms. The general finding in a number of papers has been
that using pairs of words as terms has a slight positive or no
effect on accuracy [e.g., Cohen, 19951. However, we
speculate that if the profile is to be displayed to a user, then
the user would prefer profiles with word pairs. In previous
research on profiles learned for restaurant recommendations
[Pazzani, in press], word pairs made more sense to us because
they included terms such as “goat cheese” and “prime rib”
rather than just “goat” and “prime”. Here we investigate this
hypothesis empirically on a group of subjects. Figure 4
shows a prototype that includes word pairs as terms learned

from the same e-mail messages as Figure 3. Space limitations
prohibit us from showing rule or linear models with word
pairs.
IF the message contains more of

“ser&e“ “us” “marketing” “financial” “the UCI”
“http:// www” “you can” “removed from” “corn”

THAN
“I” “learning” “me” “Subject: Re:” “function”
“KS’ “talk begins” “computer science” “the end”

THEN Discard
ELSE Forward

Figure 4. A prototype model with word pairs as terms.

The final issue we investigate empirically is whether a person
can detect whether the profile in a particular representation is
accurate. We intentionally created inaccurate profiles by
introducing noise into the classification of the training
examples. We achieved this by inverting the categorization
of 20% of the examples chosen at random. These profiles
make mistakes on 20% of the original e-mail.

The goal of this paper is to explore alternative
representations of user profiles. We speculate that various
representations and representational changes affect the
willingness of people to use the results of text mining
algorithms to create understandable profiles of a user’s
interests. In the next section, we treat these intuitions as
hypotheses and conduct a study that evaluates the following
hypotheses:

1.

2.

3.

4.

3.

Prototype representations are more acceptable to users
than rule representations.
Prototype representations are more acceptable to users
than linear model representations
Using word pairs as terms increases the acceptance of
profiles (for linear models, prototypes, and rules).
Inaccurate profiles (learned from noisy training data) are
less acceptable to users than accurate ones (for linear
models, prototypes, and rules).

MAIL FILTERING PROFILES: AN
EXPERIMENT
In this section, we report on a study in which subjects were
first asked to filter mail manually, and then were asked to
judge the various profiles learned from the data that were
shown in the figures in the previous section. We decided to
focus on a two-choice task (i.e., either forward or discard
mail) rather than filing to many different folders to establish
results on people performing the simplest case before
addressing the more complex tasks.
Subjects. The subjects were 133 male and female students
majoring in Information and Computer Science at the
University of California, Irvine who participated in this
experiment to receive extra credit.
Stimuli. The stimuli consisted of 193 mail messages and 9
mail filtering profiles. The profiles were generated by
Ripper, a perceptron, and a prototype learner. For each
learner, they learned once with a representation that included
only individual words, once with a representation that

203

included word pairs as terms, and once with word pairs learned
from data with 20% noise added.
Procedures. Subjects were asked to imagine that they
were the assistant of a faculty member and their job was to
decide whether to forward or discard mail messages sent to the
faculty member. An example of the stimuli is shown in Figure
5.

Figure 5. An example of unwanted electronic mail.
In the first phase of the experiment, each subject was shown
40 mail messages one at a time. For each message, the
subject indicated whether the message should be forwarded or
discarded and received feedback on whether the decision was
correct. The mail messages were selected randomly without
replacement. We recorded the number of errors made by
subjects on each block of ten messages.

In the final phase of the experiment, each subject was shown
the nine mail filtering profiles one at a time in random order
and asked to indicate on a scale from -3 to +3 how willing
they would be to use that profile to perform the same
decisions that they had just made for forwarding or
discarding mail. They indicated a rating by selecting a radio
button. Next they clicked on “Record Rating” and were
shown another profile. The radio button was reset to 0 before
displaying the next profile. This continued until the subject
rated all 9 profiles. Figure 6 shows an example display. We
recorded the rating of the subject on each profile to allow us
to determine what types of profiles subjects would be most
willing to use.

Results. An analysis of subject errors showed that subjects
improved by getting feedback. In the first block of ten
messages, 15 of the 133 subjects made 0 or 1 errors. In the
next block, 66 subjects improved to this level, followed by
83 on the third block of ten and 8 1 on the fourth block.

The following differences were highly significant (at least at
the .005 level).
. Prototype representations with word pairs received

higher ratings than rule representations with word pairs
t(132) = 5.64.

. Inaccurate prototype models (learned from noisy training
data) are less acceptable to users than accurate ones
t(l32)= 4.88.

Algorithm 1 Mean Rating

Rules 0.015

Rules (Pairs) -0.135

Rules (Noise)
I

1 -0.105 I

Linear Model 0.421

Linear Model (Pairs) 0.518

Linear Model (Noise) -0.120

Prototype 0.677

Prototype (Pairs) 1.06

Prototype (Noise) 0.195

Table 1. Mean rating of subjects on each type of mail profile.

The following differences were significant (at least at the .05
level).
. Prototype representations with word pairs received

higher ratings than linear model representations with
word pairs t(132) = 2.84.

. Inaccurate linear models are less acceptable to users than
accurate ones. t(132)=2.99.

The following difference was marginally significant (between
the 0.1 and .0.5 level).
. For prototype representations, using word pairs as terms

increases user ratings: t(132) = 2.37.

4. DISCUSSION
The results of the study confirm many of the intuitions. We
had initially planned to focus only on rule representations in
this study, exploring the differences between individual words
and words pairs. However, after seeing the results of Ripper
(and other rule learners) under a wide variety of parameter
settings, it became apparent that although it is easy to
understand how the learned rules classify text, the learned
rules do not seem credible. We believe this is because subjects
can easily imagine counterexamples to any rule. For
example, rules that filter out mail that contains the term
“xxx” assuming it is pornographic, fail on mail about
“Superbowl XXX.” Subjects greatly preferred prototypes to
rules, and subjects did not prefer accurate rules to less accurate
rules learned on noisy data. Increasing the representational
power of the learned rules to include word pairs did not help
increase user confidence in the rules.

The average rating of subjects for each type of mail profile is
shown in Table 1. We performed a paired one-tailed t-test to
determine which of the eight hypotheses discussed in Section
2 were supported by the experimental findings. We used a
Bonferroni adjustment to account for the fact that we are
making 8 comparisons.

Figure 6. Subjects provide feedback on mail profiles.

The prototype representation with word pairs received higher
ratings than al1 other profiles. The differences between this
profile and linear models with word pairs, rule models with
word pairs, and prototype models learned from noisy data
were all significant. The difference between prototype

204

models with only individual words as terms (0.677) and
prototypes with word pairs (1.06) is only marginally
significant in the context of the 8 comparisons being done in
this study. The linear model is not as acceptable to users as
the prototype model’ However, users were able to
distinguish a linear model that was accurate on the training
data to one that was learned from noisy data. This may be the
result of noise influencing the terms. We don’t believe users
can distinguish small changes in coefficients that could affect
the accuracy.

5. LEARNING TEXT CLASSIFICATION
PROTOTYPES
Subjects in our study had a preference for the prototype
representation for text classifiers. We feel this is a useful
representation because it has a relatively small number of
meaningful words for each class. Here, we describe how the
prototype representation is constructed. Initial attempts to
create prototypes by simply selecting the k words with the
highest value according to some criteria (e.g., information
gain) did not result in profiles that were accurate classifiers.
We adopted a genetic algorithm approach to create a
prototype for each class.

To learn a pair of prototypes for text classification, first each
training example is converted to a bit vector of length 128
where each bit represents the presence or absence of an
individual word. The 128 most informative terms (i.e., those
that best distinguish positive examples of discard from
negative examples) are selected binary features. An
individual in the population is represented as a bit vector of
length 256, the first 128 bits representing the prototype for
discard and the remaining 128 representing a prototype for
discard. In the individual, a 1 indicates that the term is
present in the prototype and a 0 represents that it is not
present in the prototype. The classification procedure for
prototypes simply counts the number of times a 1 appears in
the example (indicating that the term is present in the
example) and a 1 occurs in the corresponding location of the
discard and forward prototypes. If there are more terms in
common with the discard prototype than the forward
prototype, the message is classified as discard. Otherwise, it
is classified as forward.

The genetic algorithm operates by first initializing the
population to 100 individuals. An individual of the initial
population is formed by concatenating a randomly selected
positive example with a randomly selected negative example.
Each individual is then scored with a fitness function that
simply checks for accuracy on the training example. To
produce the next generation, the following procedure is used.

A caution on comparisons between representations is in
order. In particular, there may be better ways to visualize a
linear model for the user. For example, we could display
words with positive coefficients in green and negative
coefficients in red, and represent the magnitude of the
coefficient by the brightness of the color.

Two individuals are selected from the population with a
probability proportional to the individual fitness. Next a
new individual is created through application of the crossover
operator and a mutation operator (with a bit replaced with a
random bit with a probability of 0.005). Once 100 new
individuals are created, the 100 most fit of the new and
previous generation are retained. The genetic algorithm is
allowed to run until 10 generations produce no improvement
in the fitness function or for 100 generations. The fittest
individual is returned. Experiments with this algorithm
showed that it is comparable in accuracy to other models,
such as Rocchio’s method and a na’ive Bayesian classifier.

One drawback of the prototype representation involves the
ease with which a user may edit the prototype representation.
In particular, it would be hard for a user to anticipate the
effects of adding or deleting a term from a prototype. An
editing
environment in which these effects are easily visualized on a
training set is planned.

6. ACKNOWLEDGMENTS.
This research was funded in part by the National Science
Foundation grant IRI-9713990. Comments by Dorrit Billman,
Robin Burke, Daniel Billsus and Cathy Kick on an earlier
draft of this paper help to clarify some issues and their
presentation.

7. CONCLUSION
We have explored factors that affect the user preferences of
automatically learned mail filtering profiles. By asking
subjects to rate learned profiles that automate a task that the
subjects had learned to perform, we found that subjects have
little confidence in learned rules for text classification. A
prototype representation was developed, and experiments
showed that it is competitive in accuracy with other text
classifiers but more readily accepted by users. In addition, the
findings suggest that using word pairs as terms may improve
the user acceptance of learned prototype profiles.

8.
VI

VI

[31

[41

[51

161

[71

REFERENCES
Cohen, W. (1996). Learning Rules that Classify E-Mail
In the 1996 AAAI Spring Symposium on Machine
Learning in Information Access.
Duda, R. & Hart, P. (1973). Pattern classification and
scene analysis. New York: John Wiley & Sons.
Dumais, S., Platt, J., Heckerman, D., and Sahami, M.
(1998). Inductive learning algorithms and
representations for text categorization. Proceedings of
ACM-CIKM98.
Lewis, D., Schapire, R., Callan, J., & Papka, R. (1996).
Training algorithms for linear text classifiers. SIGIR,
298-306.
Pazzani, M. & Billsus, D. (1997). Learning and
Revising User Profiles: The identification of
interesting web sites. Machine Learning, 27, 313-331.
Pazzani, M. (in press). A Framework for Collaborative,
Content-Based and Demographic Filtering. Artificial
Intelligence Review.
Quinlan, J. (1993). C4.5: Programs for Machine
Learning. Morgan Kaufmann, Los Altos, California.

205

[S] Rocchio, J. (1911). Relevance feedback information
retrieval. In Gerald Salton (editor). The SMART
retrieval system- experiments in automated document
processing (pp. 313-323). Prentice-Hall, Englewood
Cliffs, NJ.

[9] Sahami, M., Dumais, S., Heckerman, D. and E. Horvitz
(1998). A Bayesian approach to filtering junk e-mail.
AAAI’98 Workshop on Learning for Text
Categorization, Madison, Wisconsin.

206

