

12-1 光源設定

光線的種類與照射的位置,和物件、場景的立體感及真實感有很大的關連。透過光源的設定,可以讓物件及場景呈現光影的效果,營造出 更真實的景物,或是突顯出場景中想要強調的景物。

例如在客廳的場景中,希望顯現桌椅、水壺、茶杯…等物件的光線 及陰影效果,此時就可以利用光源的架設,並設定其屬性,產生如下圖 的場景。

採用 3ds max 預設光源產生的效果

自訂光源後,產生的效果

12-1.1 光源的種類

光源的種類有聚光(Spotlight)、方向(Directional)及點(Omni) 等三種光源類型,其照射的方式有何不同呢?圖示如下:

第12章 光源與攝影機的設定

聚光燈光源及方向光源又被 3ds max 以目標型及自由型,細分出目標型聚光燈、自由型聚光燈、目標型方向光源及自由型方向光源等四種。

這四種光源及點光源的建立,可以從功能表列的 Create/Lights 子選 單中選擇,或是,選擇 Create 指令面板的 ℃Lights 鈕,然後選擇光源的 種類來建立,建立的方法請參考 12-1.2~12-1.6 節。

除了上述五種光源外, 3ds max 還提供了一種叫 Sunlight System (太陽光系統)的光源供使用者設定。

如 果 想 要 架 設 太 陽 光 系 統 光 源 , 可 以 從 功 能 表 列 依 序 選 擇 Create/Lights/Sunlight System (參考 12-1.7 節)。

場景製作篇

光源有這麼多種,什麼時候該用什麼光源?有何差異?其個別的用 途爲何咧?各種光源類型的說明及用途,說明如下:

光源類型	說	明	用 途
目標型聚光燈 (Target Spot)	可明確設定光源及 以突顯場景中的特 線以扇形方式擴散 減弱。	目標位置, 定物件,光 ,亮度逐漸	製作手電筒、方 向燈、劇場燈 光、頭燈…等燈 光效果。
自由型聚光燈 (Free Spot)	設定時沒有光源及 分,只要含蓋在光 物件,皆可接收 射,光線以扇形方 度逐漸減弱。	目標位置之 源範圍内的 到光線散,亮	製作沒有特定 目標物的場景 燈光。
目標型方向光源 (Target Directional)	可明確設定光源及 以突顯場景中的特 線以平行方向擴散	目標位置, 定物件,光。	例如模擬太陽 光照射,直射天 空 的 探 照 燈 等。
自由型方向光源 (Free Directional)	和目標型方向光源 線是以平行方向擴 衰減的效果,但是 目標位置之分。	- 様,光源 散,且沒有 沒有光源及	製作沒有特定 目標物的 景,且光線亮度 不會衰減的效 果。
點光源 (Omni)	設定時沒有光源及 分,光線朝四面八	目標位置之 方射出。	製作燈泡等不 具方向性的光 線效果。
太陽光系統 (Sunlight System)	可以說是一種太 器,它可以模擬 期、時間及方位的 生光線的方式是自 源。	陽光的模擬 出某特定日 太陽光,產 由型方向光	製作模擬大自 然季節變化的 光線效果。

為什麼開新檔案時,還沒架設光源,光源就已經存在了呢?這是 因為3ds max 會以點光源的方式先預設一光源組,做為使用者編輯物件 照明之用,等到使用者架設光源後,這組預設的光源便會自動取消, 改以使用者架設的光源為光線來源。

12-1.2 目標型聚光燈(Target Spot)

目標型聚光燈建立的方法很簡單,只要指定光源及目標即可完成。 至於後續的調整,如:照射的角度、光線的強弱…等設定,可就得憑真 功夫囉!

建立目標型聚光燈的操作方法如下: (開啓 D:\範例檔\Ch12\12-01-02.max)

採用預設的光源

架設目標型聚光燈,並產生陰影後 的效果

場景製作篇

步驟1: 選擇 Create 面板的 ⊾Lights 鈕,接著選擇 Target Spot 鈕,然後在 Top 視埠想要架設光源的位置上,按住滑鼠左鍵拖移到目標位 置後,放開滑鼠左鍵。

步驟2: 選擇 ◆ Select and Move 鈕,接著在 Front 視埠選擇光源的頂點,然後在頂點的 Y 軸上按住滑鼠左鍵往上拖移。

步驟3: 選擇 Modify 面板,接著在 Shadows 區勾選 On (使物件產生 陰影),然後輸入光線亮度。

TO BE

在步骤3還可以設定其它相關參數, Modify 面板各項功能的設定說 明如下:

1. 在 Intensity/Color/Attenuation 區可以設定光線色彩、亮度、對比…等 屬性。如果想要改變光線的顏色,可以在 Multiplier 欄右邊的色塊上 按一下滑鼠左鍵,出現 Color Selector 視窗後,選擇想要的色彩,也 可直接輸入 RGB 或 HSV 值來改變光線色彩。

R:G:B=0:255:255

R:G:B=255:0:255

R:G:B=255:125:0

另外在 Intensity/Color/Attenuation 區,可以設定光線減弱的起始及 終止位置,這些參數設定後,必須勾選 Use 項目,才會產生作用喔!

2. 在 Spotlight Parameters 區,可以明確的設定光源中心及擴散位置的 照射範圍,還有照射範圍的顯示狀態為圓形或矩形。

Hotspot: 35, Falloff: 40 照射範圍的形狀:圓形

Hotspot: 30, Falloff: 35 照射範圍的形狀:**矩形**

12-1.3 自由型聚光燈(Free Spot)

自由型聚光燈和目標型聚光燈產生的效果一樣,都是建立一個扇形 式的擴散光線,不同的是自由型聚光燈,只要建立光源位置即可。

自由型聚光燈適用在製作沒有特定目標物的場景,因為在其含蓋的 照射範圍內皆可接收到光線的照射。建立自由型聚光燈的操作方法如 下:(開啓 D:\範例檔\Ch12\12-01-03.max)

採用預設的光源

架設自由型聚光燈,並產生陰影後 的效果

 步驟1: 選擇 Create 面板的 ⊾Lights 鈕,接著選擇 Free Spot 鈕,再來在 Top 視埠想要架設光源的位置上,按一下滑鼠左鍵,然後選擇
 ◆ Select and Move 鈕。

步驟2:在 Front 視埠選擇光源的頂點,然後在 Y 軸上按住滑鼠左鍵往 上拖移,拖移到照射範圍含蓋到整個客廳後,放開滑鼠左鍵。

如果想要對自由型聚光燈的參數做修改,可以從 Modify 面板設定相 關參數,各參數的設定和目標型聚光燈相同(參考12-8 頁的說明)。

除了可以移動光源物件的位置之外,也可以使用 **ひ**Select and Rotate 鈕,將光源做旋轉的動作。

12-1.4 目標型方向光源(Target Directional)

目標型方向光源架設的方法和目標型聚光燈一樣,先選擇光源位置,再選擇目標位置。

兩者之間的不同是目標型聚光燈從光源中心到擴散位置的光線亮度 會逐漸減弱,而目標型方向光源的光線亮度則不會,換句話說,只要目 標型方向光源的照射範圍內,光線亮度全都一樣。

以下圖爲例,把目標型聚光燈及目標型方向光源的目標位置都對準 在「夢工場」的「工」這個字上,可以發現目標型聚光燈照射出來的結 果是「工」字的亮度最強,次者是「夢」跟「場」,愈往外擴的範圍光 線亮度愈薄弱(左下圖),而目標型方向光源照射出來的「夢工場」三 個字,其光線亮度則都是一樣的,不會減弱(右下圖)。

目標型聚光燈照射下的結果

目標型方向光源照射下的結果

如果想要對目標型方向光源的參數做修改,可以從 Modify 面板設定 相關參數,各參數的設定和目標型聚光燈相同(參考12-8 頁的說明)。

12-1.5 自由型方向光源(Free Directional)

自由型方向光源架設的方法和自由型聚光燈一樣,只要建立光源位 置即可。

自由型方向光源和自由型聚光燈的用途也相同,都是應用在製作沒 有特定目標物的場景,可是自由型聚光燈的光線亮度會有衰減的現像, 自由型方向光源則不會。

修改自由型方向光源參數的方法及設定和目標型聚光燈相同,請參考 12-8 頁的說明。

12-1.6 點光源(Omni)

"點光源"顧名思義就是由點而發射出去的光,換句話說,它是一種朝四面八方射出的光線,適用於光線須含蓋住所有物件的場景,或者 是燈炮等類型的光源設定。

架設點光源產生的效果

點光源的架設方法(參考12-10頁)及參數設定(參考12-8頁)和 自由型聚光燈雷同。

第 12 章 光源與攝影機的設定

12-1.7 太陽光系統(Sunlight System)

太陽光系統可以模擬出某特定日期、時間及陽光照射方位的太陽 光,產生的效果和自由型方向光源相同,只要在照射的範圍內光線亮度 都一樣,不會有衰減的現象。

建立太陽光系統的操作方法如下: (開啓 D:\範例檔\Ch12\12-01-07.max)

(步驟 1):從功能表列依序選擇 Create/Lights/Sunlight System。

步骤 2: 在 Top 視埠按住滑鼠左鍵拖移,拖移出一個羅盤方位符號後, 放開滑鼠左鍵(符號的大小只是一種參考),接著按一下滑鼠 左鍵指定方向光源。

建立的太陽光源物件包含羅盤符號及方向光源兩個物件,其中方向 光源是羅盤符號物件的子物件,可以選擇羅盤符號物件,然後做移動或 旋轉的動作;假如要修改方向光源的屬性,則選擇光源物件,再到 Modify 面板做修改,請參考 12-8 頁的說明。

如果要變更太陽光的模擬時間,則選擇 Motion 面板,在面板中重新 設定。利用這種方式,還可以製作出陽光隨時間變化而改變的動畫。

第 12 章 光源與攝影機的設定

12-2 設定攝影機(Camera)

透過攝影機(Camera)的架設,可以模擬真實世界所看到的場景, 甚至可以配合動畫設定的技巧,把攝影機做各種位置與角度的調整,就 好像拿真正的攝影機在拍攝影片一樣,導演出一部逼真的動畫。

12-2.1 攝影機的使用概念

攝影機可以分成二個部分,一是鏡頭長度,一是攝影視野,鏡頭長 度是指從攝影機的鏡頭到物件成像的距離,攝影視野則是指某特定鏡頭 長度下透過鏡頭所能看到的角度範圍。

攝影視野(Field of View, FOV)的角度會跟著鏡頭長度而改變,這 兩者之間的關係成反比,也就是說當鏡頭長度變長,攝影視野會變小(窄), 鏡頭長度變短,則攝影視野會變大(廣),下面列舉三個圖示供您參考。

拍攝場景時,影響視覺的除了鏡頭長度及攝影視野的設定外,攝影 機架設的位置、攝影的角度,也具有頗大的影響力。

怎樣的架設方式才算是適當,完全取決於呈現的結果,所以一味的 調整鏡頭長度及攝影視野,不見得能呈現出最好的效果,若是再搭配上 架設位置及攝影角度的調整,相信一定能使作品更完美的。

下面列舉幾種不同位置、高度及攝影角度拍攝的場景供您參考。

高角度拍攝

低角度拍攝

近距離+高角度拍攝

透過攝影機觀賞場景最大的優點是,可以透視的方式來觀賞場景, 提升視覺感觀上的立體及真實感。

以透視方式觀賞呈現的視覺效果

以平面方式觀賞呈現的視覺效果

第 12 章 光源與攝影機的設定

3ds max 提供了目標型攝影機和自由型攝影機供使用者設定,架設的方法和燈光一樣,兩者的應用將在 12-2.2 及 12-2.3 節為您介紹。

12-2.2 目標型攝影機(Target)

目標型攝影機(Target Camera)可明確設定鏡頭及目標位置(物件 成像的位置),以突顯場景中的特定物件,架設方法和目標型的燈光效 果一樣,須先選擇鏡頭,然後選擇目標。

架設目標型攝影機的操作方法如下: (開啓 D:\範例檔\Ch12\12-02-02.max)

步驟1: 選擇 Create 面板的 Cameras 鈕,接著選擇 Target 鈕,然後 在要架設攝影機的鏡頭處按住滑鼠左鍵拖移,拖移到目標位置 後放開滑鼠左鍵。(按下左鍵的那一點是 Camera 的位置,放開 左鍵的位置是目標點的位置)

場景製作篇

步驟2: 選擇主工具列的 ◆Select and Move 鈕,接著選擇 Front 視埠, 然後在鏡頭的 Y 軸上按住滑鼠左鍵往上拖移(以 Y 方向做拖 移),拖移到適當高度後放開滑鼠左鍵。

步骤3:在物件外按一下滑鼠左鍵,然後在攝影機的中間位置按一下滑鼠左鍵。

步骤 4: 在 X 軸上按住滑鼠左鍵往右拖移(以 X 方向做拖移)。

步驟5:在右下視埠的 Perspective 上按一下滑鼠右鍵,出現選單後, 選擇 Views,然後選擇攝影機的名稱。

12-21

隨即可以看見透過攝影機拍攝出來的結果,如果覺得這樣的角度、 位置並非您想要的,可以重複**步驟 2~步驟 4**的方法,調整攝影機,或是 從 Modify 面板設定相關參數。

關於架設攝影機有幾點補充說明如下:

在指令面板的 Parameters 區,可以設定鏡頭長度,攝影視野、正投影、環境範圍…等參數。

第 12 章 光源與攝影機的設定

12-23

各參數說明如下:

參數	說	明
Lens	設定鏡頭到物件成像的距離。(鏡頭長度)
FOV	設定攝影視野的角度。	
Orthographic	勾選正投影項目後,攝影機會以目標物的	勺正面做為目標
	,拍攝景物。	
Stock Lenses	使用預設鏡頭設定 Lens 及 FOV 的值,有	15mm > 20mm
	、24mm …等多種選擇。	
Туре	在 type 欄可以更改攝影機的種類。	

Lens及FOV之間因為互有關連,所以只要設定其中一參數值,另 一個參數的值也會跟著變更。

2. 在 Environment Ranges 區塊,可以設定攝影機近距離及遠距離的分佈範圍,這個部份的參數主要是用來配合環境特效(如打燈、霧…)而用,且遠距離的值須大於近距離的值。如果想要看到兩區域的分佈位置可以勾選 Show 選項。

場景製作篇

- 當切換到攝影機視埠後(本範例的**步驟5**),可以發現視埠控制工具 的某些按鈕不一樣了,這些按鈕的用處爲何?說明如下:
- 鏡頭(目標)推動:藉由改變攝影機或目標點之間的距離,改變檢視的場景,共有三種模式。

推	動	模	式		ı)ıd	兌												明							
	olly	Cam	era	將揖	影	機	往	囙	標	點	移	近	或	拉	遠	,	改	變	檢	視	的	惕	;景	0	
₹D	olly	Targ	et	移过	É或	拉	遠	囙	標	點	與	攝	影	機	的	距	離	,	調]整	場	景	• •		
*_D	olly	Ca	mera	以同]時	移	動	攝	影	機	與	目	標	、點	的	方	古	; ,	, j	改善	慶7	檢	視白	的土	場
+Tar	get			景 c																					

- ▶ Field-of-View (場景視野):藉由鏡頭拉近或拉遠(放大或縮小) 的方式,改變拍攝的場景。
- Perspective (透視):功能和 Dolly Camera 類似,都是用來改變
 鏡頭與目標點的間距,但不論遠近,視野皆相同,目的是為了突顯目
 標物。
- ● Truck Camera (攝影推車):以任意移動攝影機(以及它的目標點)位置的方式,改變檢視的場景。
- Ω Roll Camera (旋轉):將攝影機原地轉動改變檢視。

• 与最大(小)化:將選擇的視埠放到最大(或縮回正常)的檢視模式。

12-2.3 自由型攝影機(Free)

適用在行走、無目的掃射等沒有特定目標物的動態攝影技巧上,架 設的方法很簡單,只須選擇鏡頭的架設位置即可。

架設完成後,可以選擇主工具列的 ◆ 或 ♥ 鈕,改變攝影機的位置及角度。其參數的意義和目標型攝影機相同,請參考 12-22 頁的說明。

- 光源的種類有聚光、方向及點等三種光源類型,聚光燈光源是指光線 以扇形的方式擴散;方向光源是指光線以平行向的方式射出;點光源 是指光線向四面八方射出。
- 目標型光源可明確設定光源及目標位置,以突顯場景中的特定物件; 自由型光源則沒有光源及目標位置之分,只要含蓋在光源範圍內的物件,皆可接收到光線的照射。
- 如果要變更太陽光的模擬時間,可以選擇 Motion 面板,在面板中重 新設定。利用這種方式,還可以製作出陽光隨時間變化而改變的動 畫。
- 4. 啓動陰影後,必須進行彩現(Render)動作,才可以看見陰影。
- 5.太陽光系統可以模擬出某特定日期、時間及陽光照射方位的太陽光, 產生的效果和自由型方向光源相同,只要在照射的範圍內光線亮度都 一樣,不會有衰減的現象。
- 6. 攝影機可以分成二個部分,一是鏡頭長度,一是攝影視野,鏡頭長度 是指從攝影機的鏡頭到物件成像的距離,攝影視野則是指某特定鏡頭 長度下透過鏡頭所能看到的角度範圍。
- 7. 燈光架設完成後,可以利用主工具列的 → 或 U 鈕,改變攝影機的位置 及角度。
- 8. 透過攝影機觀賞場景最大的優點是,可以透視的方式來觀賞場景,提

升視覺感觀上的立體及真實感。

🖳 自 我 突 破 習 題

問答題:

- 1. 光源可以分為那幾種,有何不同?
- 2. 目標型和自由型的光源有什麼差別?
- 3. 開新檔案時,還沒架設光源,為什麼光源就已經存在了呢?
- 4. 試描述鏡頭長度及攝影視野(FOV)之間有何關係?
- **5.** 切換到攝影機視埠後,視埠控制工具的按鈕(Field-of-View、Truck Camera、Perspective、Roll Camera、Orbit、Pan…)各具有什麼 作用,簡述之?

實作題:

 開啓 D:\範例檔\Ch12\Ex12-01.max,在手電筒物件上架設一組目標型 聚光燈,模擬手電筒照射的樣子(如左下圖)。(參考 D:\結果檔\Ch12\ Ex12-01.max)

模擬手電筒照射的樣子

 開啓 D:\範例檔\Ch12\Ex12-02.max,然後透過攝影機的架設為小精靈 們來個特寫吧!(參考 D:\結果檔\Ch012\Ex12-02.max)

未架設攝影機

架設攝影機後

