

Electr	romagnet	ic (EM) wa	ve spectrun	n used in image	
	U	Enerov	of one photon (ele	ctron volts)	
6 105	104 103	10 ² 10 ¹ 10 ⁻	-1 10 ⁻¹ 10 ⁻²	10-3 10-4 10-5 10	-6 10-7 10-8
			10 10		
the second second	-	Concernance of			
G	N	Tild and all of Affaile	la Isfanad	Mission	D - d'a
Gamma rays	X-rays	Ultraviolet visio	le Intrared	Microwaves	Radio waves
Th	ne electromag	nefic spectrum an	rranged accordin	o to energy per photon.	
Th	ie electromag	netic spectrum a	rranged accordin	g to energy per photon.	
Tł	ie electromag	netic spectrum a	rranged accordin	g to energy per photon.	
	ne electromag	netic spectrum a	rranged accordin	g to energy per photon.	
Tř	Band No.	netic spectrum an Name	rranged accordin Wavelength (μm)	g to energy per photon. Characteristics and Uses	
Tr	Band No.	netic spectrum an Name Visible blue	wavelength (μm)	g to energy per photon. Characteristics and Uses Maximum water	
	Band No.	netic spectrum an Name Visible blue	rranged accordin Wavelength (μm) 0.45-0.52	to energy per photon. Characteristics and Uses Maximum water penetration	
	Band No.	netic spectrum an Name Visible blue Visible green	rranged accordin Wavelength (μm) 0.45–0.52 0.52–0.60	to energy per photon. Characteristics and Uses Maximum water penetration Good for measuring plant	
	Band No.	netic spectrum an Name Visible blue Visible green	wavelength (μm) 0.45-0.52 0.52-0.60	to energy per photon. Characteristics and Uses Maximum water penetration Good for measuring plant vigor	
	Band No.	netic spectrum an Name Visible blue Visible green Visible red	rranged accordin Wavelength (μm) 0.45–0.52 0.52–0.60 0.63–0.69 0.63–0.99	to energy per photon. Characteristics and Uses Maximum water penetration Good for measuring plant vigor Vegetation discrimination	
<u>_</u>	Band No. Band No.	netic spectrum an Name Visible blue Visible green Visible red Near infrared	Wavelength (μm) 0.45-0.52 0.52-0.60 0.63-0.69 0.76-0.90	Characteristics and Uses Maximum water penetration Good for measuring plant vigor Vegetation discrimination Biomass and shoreline	
<u> </u>	Band No.	Name Name Visible blue Visible green Visible red Near infrared Middla infrared	Wavelength (μm) 0.45-0.52 0.52-0.60 0.63-0.69 0.76-0.90 1.55 1.75	Characteristics and Uses Maximum water penetration Good for measuring plant vigor Vegetation discrimination Biomass and shoreline mapping Maisture contant of coil	
<u>_</u>	Band No. Band No. 1 2 3 4 5	netic spectrum an Name Visible blue Visible green Visible red Near infrared Middle infrared	Wavelength (μm) 0.45-0.52 0.52-0.60 0.63-0.69 0.76-0.90 1.55-1.75	Characteristics and Uses Maximum water penetration Good for measuring plant vigor Vegetation discrimination Biomass and shoreline mapping Moisture content of soil	
<u>_</u> <u>T</u>	Band No. Band No.	Name Name Visible blue Visible green Visible red Near infrared Middle infrared	Wavelength (μm) 0.45-0.52 0.52-0.60 0.63-0.69 0.76-0.90 1.55-1.75 10.4-12.5	Characteristics and Uses Maximum water penetration Good for measuring plant vigor Vegetation discrimination Biomass and shoreline mapping Moisture content of soil and vegetation Soil moisture thermal	
<u> </u>	Band No. Band No.	Name Name Visible blue Visible green Visible red Near infrared Middle infrared	Wavelength (μm) 0.45-0.52 0.52-0.60 0.63-0.69 0.76-0.90 1.55-1.75 10.4-12.5	Characteristics and Uses Maximum water penetration Good for measuring plant vigor Vegetation discrimination Biomass and shoreline mapping Moisture content of soil and vegetation Soil moisture; thermal mapping	
<u> </u>	Band No. 1 2 3 4 5 6 7	Name Name Visible blue Visible green Visible red Near infrared Middle infrared Middle infrared	Wavelength (μm) 0.45-0.52 0.52-0.60 0.63-0.69 0.76-0.90 1.55-1.75 10.4-12.5 2.08-2.35	Characteristics and Uses Maximum water penetration Good for measuring plant vigor Vegetation discrimination Biomass and shoreline mapping Moisture content of soil and vegetation Soil moisture; thermal mapping Minacral mapping	

RGB彩色影像與高灰階影像Y的關係

彩色Lena影像

23

轉換的高灰階Lena影像 Lena是1972年花花公子雜誌的11月小姐

	44 J T	16 4 4 7	· 日/ 1為 た	ケーモル・	5 . T. T. O			
軋例Ⅰ.4.1·給一如卜的4×4 丁彰像, 弟二張位兀平面=?								
	8	7	6	5				
	32	31	30	29				
	10	11	12	13				
	0	1	2	3				
解答:								
	00001000	00000111	00000110	00000101				
	00100000	00011111	00011110	00011101				
	00001010	00001011	00001100	00001101				
	00000000	00000001	00000010	00000011				
第三位元平面	j:							
	0	1	1	1				
	0	1	1	1				
	0	0	1	1				
	0	0	0	0				
解答完畢					3	33		

•應像術(Information hiding) •種SVD (singular value decomposition) 結合 VQ (Vector Quantization) 的隱像術方 法已知有一 $N \times N$ 的灰階影像 A , 假設A的秩(Rank)為r , 則A的SVD可表示為 $A = U \sum V^{t}$ V和U為正交矩陣(Orthogonal Matrix) 且 $\Sigma = diag(\sigma_{1}, \sigma_{2}, ..., \sigma_{n})$, 其中 $\sigma_{1}, \sigma_{2}...\sigma_{n}$ 满足 $\sigma_{1} \ge \sigma_{2} \ge ... \ge \sigma_{r} > 0$ 和 $\sigma_{r+1} = \sigma_{r+2} = ... = \sigma_{n} = 0$ 。 這裏 σ_{i} 等於 $\sqrt{\lambda_{i}}$, $\lambda_{i} \ge 0$ 為矩 陣 $A^{t}A$ 的第i個特徵 值(Eigenvalue)。 $A = U \sum V^{t} = (U_{1}U_{2}) \begin{pmatrix} \sum_{0}^{1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_{1}^{t} \\ V_{2}^{t} \end{pmatrix}$ $= U_{1} \sum_{1}^{1} V_{1}^{t}$

37

範 一例如,令 $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$,則 $A'A = \begin{bmatrix} 8 & 8 \\ 8 & 8 \end{bmatrix}$ 。 A'A 的特徵值 (Eigenvalues) 為A = 16 和 A₂ = 0 ° 將特徵值開根號,A 的奇異值為 $\sigma_1 = 4$ 和 $\sigma_2 = 0$ ° 特徵值為16的特徵向量為 $V_1 = (1,1)'$ 而特徵值為0的特徵向量為 $V_2 = (1,-1)'$,利用這二個特徵向量可建構出 $U = (V_1, V_2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ 利用 $AV = U \sum$ 可得 $AV_1 = \sigma_1 U_1$ 所以 $u_1 = \frac{1}{\sigma_1} AV_1 = \frac{1}{4} \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$

Image Hiding Result 圖1.5.2.1(a)為待植入的F16影像,圖1.5.2.1(b)為將F16植入圖1.4.2後的結果。效果 的確蠻好的,畢竟在圖1.5.2.1(b)中,用肉眼實在看不出F16隱藏其中。

1 2 3 4 5

Y

1.6.2 離散餘弦轉換 (Discrete Cosine Transform)
• DCT
令 f(xy) 為框框內位於(xy)的灰階值減去128,則DCT的計算公式如下

$$D(i, j) = \frac{1}{\sqrt{2N}} C(i)C(j) \sum_{x=0}^{N-1} f(x, y) \cos \frac{(2x+1)i\pi}{2N} \cos \frac{(2y+1)j\pi}{2N} \quad (1.3)$$

$$c(i) = \begin{cases} 1/\sqrt{2} & , i=0 \\ 1 & , otherwise \end{cases} \quad c(j) = \begin{cases} 1/\sqrt{2} & , j=0 \\ 1 & , otherwise \end{cases}$$
• IDCT
f(x,y)也可透過IDCT(inverse DCT)得到,公式如下

$$f(x,y) = \frac{1}{\sqrt{2N}} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} C(i)C(j)D(i, j) \cos \frac{(2x+1)i\pi}{2N} \cos \frac{(2y+1)j\pi}{2N} \quad (1.4)$$
透過式子(1.4)求得f(x,y)後再加上128即可得到位於影像中(x,y)位
置的原始灰階值。

■ 求解傅利葉係數	
有了傅利葉基底後,g($ heta$)可表示成	
$g(\theta) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos k\theta + b_k \sin k\theta \right]$	(1.5)
則從 $\int_{0}^{2\pi} g(\theta) \cos m\theta d\theta = \begin{cases} \pi a_m, m \neq 0\\ \pi a_0, m = 0 \end{cases}$	
可推得 $a_m = \frac{1}{\pi} \int_0^{2\pi} g(\theta) \cos m\theta d\theta, m = 0, 1, 2, \dots$	
從	
$\int_0^{2\pi} g(\theta) \sin m\theta d\theta = \pi b_m (m \neq 0)$	
可推得 $b = \frac{1}{2\pi} \int_{0}^{2\pi} g(\theta) \sin m\theta d\theta m = 1.2.3$	
πJ_0	56

FFT 令 $W_N^i = e^{\frac{2\pi i i}{N}i}$ 為1的基本根(Primitive Root)且滿足 $W_N^N = 1 \circ 若$ $F_{8} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & W^{1} & W^{2} & W^{3} & W^{4} & W^{5} & W^{6} \\ 1 & W^{2} & W^{4} & W^{6} & 1 & W^{2} & W^{4} \\ 1 & W^{3} & W^{6} & W^{1} & W^{4} & W^{7} & W^{2} \\ 1 & W^{4} & 1 & W^{4} & 1 & W^{4} & 1 \\ 1 & W^{5} & W^{2} & W^{7} & W^{4} & W^{1} & W^{6} \\ 1 & W^{6} & W^{4} & W^{2} & 1 & W^{6} & W^{4} \\ 1 & W^{7} & W^{6} & W^{5} & W^{4} & W^{3} & W^{2} \end{pmatrix}$ N=8時,傅利葉矩陣為 1 W^7 W^6 W^5 W^4 W^3 W^2 $(1 W^7 W^6 W^5 W^4 W^3 W^2)$ W^1 **FFT**可在 $O(N \log N)$ 時間內完成,首先將 \bar{X} 分成偶半部和奇半部, $\vec{X}_o = \begin{pmatrix} X_1 \\ X_3 \\ X_5 \\ \vdots \end{pmatrix} \qquad \vec{X}_e = \begin{pmatrix} X_0 \\ X_2 \\ X_4 \\ \vdots \end{pmatrix}$ 分别表示成 58

利用替代法證明 $T(N) = 2T(N/2) + \Theta(N) = O(N \log N)$ 已知 $T(N) = 2T(N/2) + \Theta(N)$,可推得	
$T(N) = 2T(N/2) + \Theta(N)$ $\leq 2T(N/2) + CN$	
$\leq 2^2 T(N/4) + CN + CN$	
≤ 2k T(N/2k) + CN + + CN + CN = 2k T(N/2k) + (1 + + 1 + 1)CN	
$= \frac{N}{2}T(2) + (\log N - 1)CN$ $N + CN\log N - CN$	
$= \frac{1}{2} + CN \log N - CN$ $= O(N \log N)$	
	60

• 分開性(Separability) 二维的FT,假設一張影像位於(x,y)的灰階值為f(x,y),則FT定義為 $F(u,v) = \frac{1}{N \times N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi [\frac{(ux+vy)}{N}]}$ (1.7) IFT(Inverse FT)依下式求得 $f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} F(u,v) e^{-j2\pi [\frac{(ux+vy)}{N}]}$ (1.8) 式子(1.7.1.4)可改寫成下列的型式 $F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} e^{-\frac{j2\pi u}{N}} \int_{y=0}^{N-1} f(x,y) e^{-\frac{j2\pi u}{N}}$ $= \frac{1}{N} \sum_{x=0}^{N-1} F(x,v) e^{-\frac{j2\pi ux}{N}}$ (1.9) 式子(1.7.1.5) 中F(x,v)可看成先對y軸進行FT再對x軸進行FT。 (1.1.7.1.5)式顯示的是FT的分開性(Separability)。

假如我們想把FT後的結果從原點(0rigin)移到中央(Center),該如
何辨到呢?
ANS:首先將乘上₍₋₁₎^{x+y},則 f(x,y)(-1)^{x+y} 的FT如下所算
$$\sum_{x=0}^{N-1}\sum_{y=0}^{N-1}f(x,y)(-1)^{x+y}e^{-j2\pi\left[\frac{(xx+yy)}{N}\right]}$$
$$=\sum_{x=0}^{N-1}\sum_{y=0}^{N-1}f(x,y)e^{j\pi(x+y)}e^{-j2\pi\left[\frac{(xx+yy)}{N}\right]} =\sum_{x=0}^{N-1N-1}f(x,y)e^{j2\pi\left[\frac{N-1}{2}+\frac{N}{2}\right]}e^{-j2\pi\left[\frac{(xx+yy)}{N}\right]}$$
$$=\sum_{x=0}^{N-1N-1}f(x,y)e^{-j2\pi\left[\frac{(u-\frac{N}{2})x+(v-\frac{N}{2})y}{N}\right]} = F(u-\frac{N}{2},v-\frac{N}{2})$$
(1.10)
hf(x,y)(-1)^{x+y}的FT等於 $F(u-\frac{N}{2},v-\frac{N}{2})$,可得知已將FT的結果從
原點移至中央處了。式(1.10)顯示了FT的平移性(Translation)。

• 迴積定理(Convolution Theorem)
兩函數
$$f(x)$$
 和 $g(x)$ 的迴積定義為
 $f(x) * g(x) = \sum_{m=0}^{N-1} f(m)g(x-m)$
令
 $2(x) = \frac{1}{N} \sum_{m=0}^{N-1} f(m)g(x-m)$
則所有 $z(x)$ 經FT作用後得
 $\frac{1}{N} \sum_{x=0}^{N-1} z(x) W^{kx} = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{m=0}^{N-1} f(m)g(x-m)W^{kx}$
 $= \frac{1}{N} \sum_{x=0}^{N-1} f(m) \frac{1}{N} \sum_{x=0}^{N-1} g(x-m)W^{kx}$
 $= \frac{1}{N} \sum_{m=0}^{N-1} f(m)W^{km} \frac{1}{N} \sum_{x=0}^{N-1} g(x)W^{kx}$
 $= F(u)G(u)$ 64

