
Virtools Dev User Guide
Virtools - The Behavior Company

www.virtools.com

Virtools Dev User Guide

Copyright © 2001 Virtools SA

All Rights Reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission from Virtools.

VIRTOOLS SA (Virtools) PROVIDES THIS MATERIAL "AS IS", WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Virtools may make improvements and changes to the product described in this document at
any time without notice. Virtools assumes no responsibility for the use of the product or this
document except as expressly set forth in the applicable Virtools license agreement or license
agreements and subject to the terms and conditions set forth therein and applicable Virtools
policies and procedures. This document may contain technical inaccuracies or typographical
errors. Periodic changes are made to the information contained herein: these changes will be
incorporated in new editions of the manual.

Virtools is a registered trademark.

Windows and Internet Explorer are registered trademarks of Microsoft, Navigator and Com-
municator are registered trademarks of Netscape Communications. All other brand or product
names are the trademarks or registered trademarks of their respective holders.

Written and edited by Christopher Mc Carthy and David Callele.

Cover art by Etienne Mineur

Thanks to Ouali Chabi and idenao (G. Lancrey and R. Enjalbert) for help with the tutorials,
and to Erwann Surcouf and Boris Duong for line art.

Table of Contents
PART 1 - INTRODUCING VIRTOOLS DEV 11

1 What is Virtools Dev? 13
1.1 An Authoring Application . 13
1.2 A Behavioral Engine (CK2) . 13
1.3 A Render Engine. 14
1.4 A Web Player . 14
1.5 A Software Development Kit . 14

2 About this User Guide 17
2.1 Introducing Virtools Dev . 17
2.2 Looking at Virtools Dev . 17
2.3 3D Space in Virtools Dev . 18
2.4 Understanding Virtools Dev . 18
2.5 Authoring in Virtools Dev . 18
2.6 Appendix. 19

3 Installing Virtools Dev 21
3.1 Hardware. 21
3.2 Software . 21
3.3 Installing Virtools Dev . 21

4 Getting More Information. 23
4.1 Virtools Dev Authoring Application . 23

4.1.1 Screentips . 23
4.1.2 Online Reference . 23

4.2 SDK Documentation. 24
4.3 Virtools MiniSite . 24
4.4 Internet Based Resources . 25
1

2

Table of Contents
5 Document Conventions. 27
5.1 Organization . 27
5.2 Emphasis . 27
5.3 Lists . 28
5.4 Figures . 28
5.5 Acronyms . 28
5.6 Building Blocks (BBs) . 29
5.7 Parameter Operations (paramOps) . 29
5.8 Parameter Names (pNames) . 30
5.9 Parameter Types (pTypes). 30
5.10 Parameter Values (pValues) . 30
5.11 File, Resource and Object Names . 30
5.12 Graphical User Interface (GUI) Elements . 31
5.13 Attributes . 31

PART 2 - LOOKING AT VIRTOOLS DEV... 33

6 Virtools Dev at Start-Up 35

7 Menu Bar. 37

8 3D Layout . 39
8.1 Top Toolbar . 39
8.2 Left Toolbar. 40

8.2.1 Selection Tools . 40
8.2.2 Transformation Tools . 40

Table of Contents
8.2.3 Reference and Screen Guides . 42
8.2.4 Creation Tools. 42
8.2.5 Camera Navigation Tools . 43

9 Building Blocks and Data Resources. . . . 45

10 Level Manager. 47
10.0.1 Top Toolbar . 47
10.0.2 Left Toolbar . 48

11 Schematic . 49
11.0.1 Top Toolbar . 50

12 Status Bar . 53

PART 3 - 3D SPACE IN VIRTOOLS DEV . 55

13 Virtools Dev and 3D Graphics 57

14 Coordinate Systems 59
14.1 The 2D Coordinate System. 59
14.2 The 3D Coordinate System. 60

14.2.1 Units of Measurement. 61
14.2.2 3D Coordinates . 62
14.2.3 Vectors . 62
14.2.4 Local Coordinate System, Relative Coordinate System. 63
14.2.5 World Coordinate System, Absolute Coordinate System. 64
3

4

Table of Contents
14.2.6 Referential Axes, Referential . 64
14.2.7 Orientation. 65
14.2.8 Orientation and the Referential . 66

15 Transformations 69

16 Matrix Operations 71

17 Worlds and Levels, Places and Scenes . . 73

18 Cameras and Rendering 75
18.1 Depth of Field, Z buffering . 75

19 The Render Engine 79
19.1 The Render Engine – CK2_3D . 79
19.2 Virtools Dev Rasterizers . 79

PART 4 - UNDERSTANDING VIRTOOLS DEV

81

20 Elements, Classes, and Object Oriented Design
83

20.1 Object Oriented Design . 83
20.2 Inheritance . 85
20.3 Specialization . 86
20.4 Aggregation . 86

20.4.1 Run-time Aggregation, The Scene Hierarchy 88

Table of Contents
20.4.2 Sharing Elements . 88
20.5 Association . 89

21 The Elements of a Composition (CMO) . 91
21.1 The Behavioral Object (BeObject) . 92
21.2 The Level . 92
21.3 Scenes . 93
21.4 Places and Portals . 94
21.5 Abstract Elements . 95

21.5.1 Groups. 95
21.5.2 Arrays . 95

22 The Virtools Dev Process Loop 97
22.1 Processing Behaviors . 99
22.2 Rendering . 100

23 The Behavioral Engine 101
23.1 Behavior Loops. 103
23.2 Priority . 104

24 Behaviors and Scripts 107
24.1 Behavior Building Block (BB) . 107

24.1.1 Interpreting a BB Symbol . 107
24.1.2 Behavior Input, bIn . 108
24.1.3 Behavior Output, bOut . 108
24.1.4 Behavior Link, bLink . 108
24.1.5 Parameter Input and Parameter Output. 109
24.1.6 Target Parameter. 109
24.1.7 C, S, and V . 111
24.1.8 Messages . 113
5

6

Table of Contents
24.1.9 BB Processing . 113
24.2 Behavior Graph (BG) . 114

25 Parameters . 117
25.1 Parameter Types . 117
25.2 Parameter Input, pIn . 118
25.3 Parameter Output, pOut. 118
25.4 Parameter Link, pLink. 119
25.5 Local Parameter. 119
25.6 This . 119
25.7 Parameter Shortcuts. 120

26 Parameter Operations (paramOps) . . . 121
26.1 Parameter Notation . 122
26.2 paramOps and Behaviors. 123
26.3 Advanced paramOps . 124

26.3.1 Order of pIns . 124
26.3.2 Calculating a Value at a Specific Moment 124
26.3.3 pTypes <Angle>, <Float>, and <Percentage> 125

27 Attributes . 127
27.1 Attribute Shortcuts. 128

Table of Contents
PART 5 - AUTHORING IN VIRTOOLS DEV ...
129

28 Quick Start . 131
28.1 Overview. 131
28.2 Organize Resources . 131
28.3 Plan the Content . 132
28.4 Import Media . 132

28.4.1 Importing the Scenery. 132
28.4.2 Exploring the Scene in Author Mode . 134
28.4.3 Adding a Character and Animations. 134

28.5 Arrange the Scene . 135
28.5.1 Adding a Camera . 136
28.5.2 Activating the Camera at the Start of the Scene 137
28.5.3 Targeting the Camera . 138

28.6 Add Interactivity . 139
28.6.1 Controlling the Character . 139
28.6.2 Adding Keyboard Support . 140

28.7 Test . 141
28.7.1 Switching to Play Mode . 141
28.7.2 Returning to Author Mode . 141

28.8 Refine . 142
28.8.1 Making the Character Stay on the Floor . 142
28.8.2 Adding Simple Collision Management. 144
28.8.3 Declaring Objects as Obstacles. 144

28.9 Test Again. 145
28.9.1 Switching to Play Mode . 145
7

8

Table of Contents
28.9.2 Returning to Author Mode . 145
28.10 Refine Again . 146

28.10.1 Dynamically Switching Cameras . 146
28.11 Test Again . 148

28.11.1 Switching to Play Mode . 148
28.11.2 Returning to Author Mode . 149

28.12 One Last Refinement. 149
28.13 Export Content. 149

28.13.1 Saving Your Hard Work . 149
28.13.2 Sharing Your Content With Others . 150

28.14 If You Encountered Any Difficulties... 150
28.15 Congratulations . 151

29 Particles . 153
29.1 Introduction . 153
29.2 Emitters . 153
29.3 Particles . 154
29.4 Deflectors . 154
29.5 Interactors . 154
29.6 Configuring a Particle System. 155
29.7 StartCmos and FinishedCmos . 157
29.8 Exercise 1 - Particle System Basics. 158

29.8.1 Start . 158
29.8.2 Placing an Emitter . 158
29.8.3 First Few Particles . 159
29.8.4 Changing a Basic Parameter: Adding Color 160
29.8.5 Texturing Particles . 160
29.8.6 Configuring Speed, Lifespan, and Size . 161
29.8.7 Variance and Other Parameters . 162

Table of Contents
29.8.8 Conclusion . 162
29.9 Exercise 2 - Moving an Emitter and Adding Interactors 162

29.9.1 Creating a Moving Emitter . 163
29.9.2 Adjusting Gravity . 164
29.9.3 Adding Wind. 165
29.9.4 Multiple Attributes on a Single 3D Frame 166
29.9.5 Magnet and Other Attributes . 167
29.9.6 Conclusion . 168

29.10 Exercise 3 - Deflectors . 168
29.10.1 Start . 169
29.10.2 Creating a Deflector . 169
29.10.3 Placing and Resizing a Deflector . 170
29.10.4 Placing a Deflector on an Object . 171
29.10.5 Editing Particle System Attributes . 171
29.10.6 Conclusion . 172

29.11 Exercise 4 - Using Animated Textures with Particles 172
29.12 Exercise 5 - Creating 3D Particles . 174

29.12.1 Conclusion . 175
29.13 Multiple Particle Systems . 175
29.14 Frame Rates with Particle Systems. 176

PART 6 - APPENDIX 179

30 Glossary . 181
30.1 How to Use the Glossary . 181
9

10

Table of Contents
30.2 Definitions and CKClasses . 182
30.3 Terms and Definitions . 184

31 Controlling the Orientation of an Element .
217

32 Example Transformations. 219
32.1 Translation. 220
32.2 Rotation . 220

32.2.1 About Local X Axis . 220
32.2.2 About Local Y Axis . 221
32.2.3 About Local Z Axis . 221

32.3 Scale . 222

1

PART 1 - INTRODUCING
VIRTOOLS DEV

Welcome to Virtools Dev. Start here and we should have you up and running
in no time at all.

Part 1 contains:
 1 What is Virtools Dev? - a short description of the components that
make up Virtools Dev
 2 About this User Guide - an overview of this user guide
 3 Installing Virtools Dev - installation requirements and installation
procedures
 4 Getting More Information - how and where to find further infor-
mation
 5 Document Conventions - how to interpret the style guidelines used
in this User Guide
11

1

12

Introducing Virtools Dev

1What is Virtools Dev?
1 WHAT IS VIRTOOLS DEV?
Virtools Dev is an extensive collection of technologies for 3D visualization.
The Virtools Dev technologies are broadly grouped as:

1. an Authoring application
2. a Behavioral Engine (CK2)
3. a Rendering Engine
4. a Web Player
5. a Software Development Kit (SDK)

1.1 An Authoring Application
Virtools Dev is an authoring application that allows you to quickly and easily
create compositions (CMOs) full of rich, interactive, 3D content. Industry stan-
dard media such as models, animations, images and sounds are brought to life
by Virtools’ behavior technologies.

You cannot create models in Virtools Dev; Virtools Dev is not a modeling
application. However, simple elements such as Cameras, Lights, Curves, inter-
face elements, and 3D Frames (called dummies or helpers in most 3D model-
ing applications) can be created with the click of an icon.

1.2 A Behavioral Engine (CK2)
Virtools Dev is a behavioral engine – that is, Virtools Dev processes behaviors.
A behavior is simply a description of how a certain element acts in an environ-
ment. Virtools Dev provides an extensive collection of reusable behaviors in
the form of Behavior Building Blocks (BBs) that allow you to create almost
any type of content through a simple, graphical interface – without writing a
single line of code!

Virtools Dev also has a number of managers that help the Behavioral Engine
13

1

14

Introducing Virtools Dev
perform its duties. Some of these managers (such as the TimeManager) are an
internal part of the Behavioral Engine while others (such as the SoundMan-
ager) are external to the Behavioral Engine.

Virtools Dev's Behavioral Engine is often referred to as CK2, the name of the
central software component.

1.3 A Render Engine
Virtools Dev is a render engine that draws the image you see in 3D Layout.
The Virtools render engine can be replaced with a render engine of your own,
or customized to fit your specific needs using the Software Development Kit
(SDK).

1.4 A Web Player
Good technology must be easily accessible before it can be considered a great
technology.

Virtools provides a free Web Player that can be downloaded by anyone – and
the download is less than 1 MB!

The Web Player contains a Playback only version of the Behavioral Engine and
the complete Render Engine.

Further information on the Virtools Web Player is available in the OR.

1.5 A Software Development Kit
Virtools Dev is a Software Development Kit (SDK) that provides access to
the Behavioral Engine and the Render Engine. With the SDK, you can

• create new behaviors or modify existing ones
• create new parameter types
• create media plugins to read any media of your choice

1What is Virtools Dev?
• replace the Virtools Dev render engine with a render engine of your
choice

• create a custom executable file (.exe)
• modify and extend the Virtools Dev render engine – full source code

to the rendering engines is provided.

These are just a few examples – your creativity is the only limit to how far you
can go!
15

1

16

Introducing Virtools Dev

1About this User Guide
2 ABOUT THIS USER GUIDE
The Virtools Dev User Guide is divided into five major parts and an Appen-
dix:

1. Introducing Virtools Dev
2. Looking at Virtools Dev
3. 3D Space in Virtools Dev
4. Understanding Virtools Dev
5. Authoring in Virtools Dev
6. Appendix

2.1 Introducing Virtools Dev
Introducing Virtools Dev is the part you are currently reading. This part con-
tains a concise description of the components that make up Virtools Dev and
also contains practical information on how to get the most out of this User
Guide.

Read this part for the software and hardware requirements for installing Vir-
tools Dev, as well as the installation instructions. This part also contains infor-
mation on document conventions used in this book.

2.2 Looking at Virtools Dev
Looking At Virtools Dev is a brief guided tour of the Virtools Dev interface.
The icons used by Virtools Dev are presented, identified, and briefly
described.

If you like to know what the user interface controls mean before you use a
product, then this is the part for you.
17

1

18

Introducing Virtools Dev
2.3 3D Space in Virtools Dev
3D Space in Virtools Dev describes how Virtools Dev creates its 3D space
and the rules that govern it. Just how can you have a 3D space on a 2D screen?

This part is essential reading for those new to 3D and recommended for those
who have been working in 3D for some time. Concentrating on the basic con-
cepts of 3D, and how they are expressed in Virtools Dev, this part starts off
nice and easy and before you know it, you are done!

If you can't get enough of vectors and matrices, there are one or two sections
in the Appendix that will interest you too.

2.4 Understanding Virtools Dev
Understanding Virtools Dev explains (almost) all you ever wanted to know
about Virtools Dev but didn't know who to ask. This part answers questions
like: Is it possible to have more than one level in a composition? and Why can some behav-
iors only be applied to certain elements?

Whatever your experience level, this part is essential reading for everyone. You
could get along working in Virtools Dev without reading this part, but why
make things hard for yourself ?

2.5 Authoring in Virtools Dev
This is the part that everybody asks about - where can I find tutorials for Vir-
tools Dev? This part contains two tutorials: a Quick Start for those of you just
starting out in Virtools Dev, and a fun and informative tutorial on particles for
those of you who have some experience with Virtools Dev already.

For the Quick Start, we would prefer you to peruse (and even read) the other
parts beforehand. But if you are too impatient, we have taken care to make the
Quick Start accessible to everyone and we sincerely hope we don’t lose anyone
on the way. Just make sure you read the other parts after!

1About this User Guide
The particles tutorial is just a sample of what is to come. Further tutorials will
be posted to the Virtools website on a regular basis and you can even find
some previews in the Virtools MiniSite.

The Virtools MiniSite is installed in the Documentation folder. However, if
you chose not install this component, you will have to launch the installation
program once more, and choose to install the MiniSite only.

2.6 Appendix
At the end of the User Guide, last - but certainly not least - is the Appendix.
Our appendix is larger than most - mostly because of our extensive glossary.
The Virtools Glossary contains definitions for many Virtools words and terms
that newcomers and pros alike will come to appreciate for their clarity and
valuable contextual information.

The Glossary is not all there is to the Appendix - you will also find further
help for those tricky orientation and transformation questions.
19

1

20

Introducing Virtools Dev

1Installing Virtools Dev
3 INSTALLING VIRTOOLS DEV
To successfully install and use Virtools Dev, please check that you meet the
minimum hardware and software requirements listed below.

NOTE Should you need them, Microsoft DirectX and Internet Explorer are also pro-
vided on the installation CD.

3.1 Hardware
• Pentium II or equivalent
• 64 MB of RAM
• CD-ROM drive
• Monitor capable of displaying 1024 by 768 in 16 bit color (65536 color/

Hi-color)
• Direct3D or OpenGL compatible 3D graphic accelerator card with 8 MB

of RAM
• Pointing device (mouse, trackball, etc.)
• Sound Card (not a requirement but recommended)

3.2 Software
• Microsoft Windows (95, 98, 98SE, ME, 2000 or NT 4.0 (with Service Pack

6))
• Microsoft Internet Explorer 4.0 or higher (for the Online Reference)
• Microsoft DirectX 5.0 or higher for DirectX compatible 3D graphic accel-

erator cards

3.3 Installing Virtools Dev
You can choose the components of Virtools Dev that you wish to install. If
you choose to install all components, you will need approximately 600 MB of
21

1

22

Introducing Virtools Dev
disk space.
1. Insert the Virtools Dev CD
2. Follow the on-screen instructions
3. If your CD-ROM drive does not automatically run the installation pro-

gram, manually execute Setup.exe in the Dev folder of the Virtools Dev
CD-ROM

NOTE If you have previous versions of Virtools software installed on your computer,
ensure that you install this version in a new program folder to avoid any poten-
tial upgrade problems.

NOTE Virtools Dev uses a new file format that is not backwards-compatible with file
formats used by previous versions of Virtools products. However, Virtools Dev
can open and use files saved by previous versions of Virtools products.

1Getting More Information
4 GETTING MORE INFORMATION
There are a number of sources for more information on Virtools and Virtools
Dev:

1. the Online Reference help system from within the Virtools Dev
authoring application

2. the Virtools Dev SDK and the SDK Help files
3. the Virtools MiniSite
4. Internet based resources

4.1 Virtools Dev Authoring Application
There are two sources of help integrated with the Virtools Dev application:
screentips and the Online Reference.

4.1.1 Screentips

Screentips are available for all icons and most buttons in the Virtools Dev
interface. A screentip is a text popup that appears when the mouse hovers over
an icon or button. Screentips are used by Virtools Dev to display the name of
an icon or button, and to display the keyboard shortcut for that icon or button
if one exists.

4.1.2 Online Reference

The Virtools Dev Online Reference is in the form of a compiled help file, pro-
viding full text search, a comprehensive index, and a favorites tab for book-
marking pages you find useful pages. The Online Reference is divided into
these topics:

1. Interface - the Virtools Dev interface
2. Concepts - the concepts underlying Virtools Dev
23

1

24

Introducing Virtools Dev
3. Scripting - documentation for every Building Block (BB) and a list of
all parameter operations (paramOps)

4. Delivering Content - how to deliver your wonderful compositions to
your audience

5. Importing media - supported formats, modeling tips and tutorials

4.2 SDK Documentation
The Virtools Dev SDK allows you to extend Virtools Dev in ways that only
you can imagine. The Virtools Dev SDK documentation contains a wealth of
information on the internal workings of Virtools Dev. The Virtools Dev SDK
contains:

1. SDKHelp.chm - the most up to date source for detailed information
on the Virtools Dev architecture and principles. The SDK help
includes many entries that place the components of Virtools Dev in
context, numerous commented code samples, and reference entries for
the software elements of the Virtools Dev SDK.

2. VxMathHelp.chm - the Virtools Dev SDK makes extensive use of
mathematical operations. A library of commonly used functions is pro-
vided as part of the SDK.

3. Code samples - a large library of source code examples is provided,
including the complete source code for all BBs and the Virtools Ren-
der Engines! Source code samples for file format translators and a
standalone Player are also provided.

4.3 Virtools MiniSite
The Virtools MiniSite is a place of learning - and a few well intentioned dis-
tractions. It is divided into five parts:

1. Technical Samples - BBs in action, some with commented scripts if
you decide to open the CMO in Virtools Dev

1Getting More Information
2. Sample Resources - information and suggested uses for some ele-
ments contained in the VirtoolsResources data resource

3. Tutorials - includes CMOs and AVI video files
4. Web Player Commands - how to get the most of the Virtools Web

Player
5. Demo - presents an imaginary game teaser shown at the Siggraph 2000

trade show - complete with editable CMO so that you can see exactly
how it was done!

4.4 Internet Based Resources
There are various websites and mailing lists that can help you learn Virtools
Dev and help you to keep informed of the latest Virtools developments:

1. Virtools website (www.virtools.com) - for official company news
2. Virtools newsletter (join the mailing list from the Virtools website)
3. The SwapMeet (www.theswapmeet.com) - a significant resource for

the Virtools user community, it includes the ever popular Discussion
Forums

4. User Group mailing list (join this mailing list from the Swap-Meet
website)
25

1

26

Introducing Virtools Dev

1Document Conventions
5 DOCUMENT CONVENTIONS
This section defines the document conventions used throughout the User
Guide.

NOTE You are strongly encouraged to refer to the Glossary whenever you encounter a
term that is unfamiliar. Virtools Dev uses a wide variety of terms, some that are
unique to this development environment. These terms, and many terms from
the field of 3D graphics, are explained in the Glossary.

5.1 Organization
The User Guide is organized into five numbered Parts. Each Part presents an
overview of the Sections contained in that Part. Sections, and the topics within
each Section, are organized using outline numbering.

For example, a series of Sections with the following numbering indicates that
the material is organized and related as stated.

2 Major Topic
2.1 Sub-topic of 2
2.1.1 Sub-topic of 2.1
2.1.2 Sub-topic of 2.1
2.2 Sub-topic of 2

5.2 Emphasis
Emphasis is used to draw your attention to

• a particular point that is important to comprehension of the matter
under discussion.
For example:
Objects instantiated from these classes are the objects that can have
behaviors attached to them but they are not required to have behaviors.
27

1

28

Introducing Virtools Dev
• the first time a term specific to Virtools Dev is used. You are advised
to consult the Glossary for further information on that term.
For example:
In Virtools Dev the point of reference is identified as the referential.

NOTE Emphasis is also conveyed using notes like this.

5.3 Lists
Numbered lists indicate that the list elements are related in an ordered manner.
For example, the list elements may enumerate all possible options or detail a
sequence of events.

Bulleted lists indicate that list elements are related but that no special order is
implied by the sequence in which the list elements are presented. For example,
the list elements may provide a partial list of possible options or suggested
applications.

5.4 Figures
A figure is presented in the section that first references the figure. Within a
paragraph, a figure reference is presented as shown.

If you look at the Material Setup in 8-4, you can see...

5.5 Acronyms
Many terms have acronyms in Virtools. The first time a term commonly
referred to by an acronym is used in a section, the term is spelled out followed
by the acronym in brackets.

• Software Development Kit (SDK)
• Building Block (BB)

Once an acronym is introduced, the acronym is used interchangeably with the

1Document Conventions
full text in the remainder of the document.

5.6 Building Blocks (BBs)
The first time a BB name is mentioned in a Section, the name of the BB is
always followed by the location of the BB in parenthesis. If the user is being
directed to attach the BB, then the location of the BB always follows the name
of the BB.

Drag Rotate (3D Transformations/Basic) onto the frame in 3D Lay-

out.

5.7 Parameter Operations (paramOps)
Virtools Dev uses the following notation to describe paramOps in written
form.

For binary operations (operations with two pIns), the syntax is
Result or Output Operation Type Input1 Input2

For unary operations (operations with one pIn), the syntax is
Result or Output Operation Type Input1

In all cases, the syntax is strictly defined as
<pType> paramOp vectors

For example:
<Vector> Multiply <Float> <Vector>

represents a Multiply Operation that produces an output result of pType
<Vector>, using inputs of pType <Float> and pType <Vector>.

Values can also be associated with the pIns and pOut.
<Float=50.0> Multiply <Float=10.0> <Int=5>
29

1

30

Introducing Virtools Dev
5.8 Parameter Names (pNames)
Parameter Names are formatted as shown.

Change the value of Speed to...

5.9 Parameter Types (pTypes)
Parameter types are formatted as shown. Parameter types are always bounded
by angle brackets.

You should remember that parameter types <Float>, <Angle> and
<Percentage> are actually all the same type.

5.10 Parameter Values (pValues)
Parameter values are formatted as shown.

Change the value of Speed from 0.001 to 0.0001

5.11 File, Resource and Object Names
File, resource and object names are formatted as shown.

To import myCharacter.3ds as a character, you...
To open the Mesh Setup for Cube, you...

Where relevant, the file location is shown in brackets
Open tutorial.cmo (Documentation/Cmos/StartCmos)
From Virtools Resources, drag myCharacter.3ds (Characters) into the
3D Layout.

1Document Conventions
5.12 Graphical User Interface (GUI)
Elements
All GUI elements such as Editors (Level Manager, Schematic, Parameter
Debugger, Dialog Boxes, BB names, paramOps, etc.) are formatted as shown.

From Virtools Resources, drag xyz into 3D Layout.
In the Edit Parameters dialog box, select...
Drag Rotate (3D Transformations/Basic) onto the 3D frame in 3D

Layout.

5.13 Attributes
All Attributes are formatted as shown.

The frame now has the attribute Particle Plane Deflector.
31

1

32

Introducing Virtools Dev

2

PART 2 - LOOKING AT
VIRTOOLS DEV

Looking At Virtools Dev is a brief guided tour of the Virtools Dev interface.
The icons used by Virtools Dev are presented, identified, and briefly
described.

If you like to know what the user interface controls mean before you use a
product, then this is the part for you.

6 Virtools Dev at Start-Up - a guided tour of the Virtools Dev inter-
face in its default state
7 Menu Bar - a closer look at the Menu Bar and some of its enhanced
features
8 3D Layout - the tools for manipulating your compositions
9 Building Blocks and Data Resources - accessing those amazing
reusable resources
10 Level Manager - tools for organizing your compositions
11 Schematic - where you bring your resources to life
12 Status Bar - important messages and controls for testing and
refining your compositions
33

2

34

Looking at Virtools Dev

2Virtools Dev at Start-Up
6 VIRTOOLS DEV AT START-UP
Figure 6-1 shows you Virtools Dev at start-up. Virtools Dev uses a tabbed
windows system that allows you to move, resize or float windows. The active
window is shown by a black tab, all inactive windows have gray tabs. Refer to
the Online Reference (Interface) for more information.
6-1 The Virtools Dev start-up screen

Virtools Dev is effectively divided into three main regions, with a menu bar at
the top and a status bar at the bottom.

The top left region contains the 3D Layout window, used to visualize your
project in real-time. The top right region contains resources in the form of
35

2

36

Looking at Virtools Dev
Building Blocks and Data Resources.

The bottom half of the screen contains the Level Manager and Schematic
windows, used for organizing your project and creating scripts respectively.

NOTE All windows in Virtools Dev can be moved from region to region or made to float
as separate windows. Due to the dynamic nature of the interface, the User
Guide describes the interface with reference to its start up state only.

To return window sizes to their start up state, choose Refresh Windows (F5)
from the Options menu.

2Menu Bar
7 MENU BAR
The menu bar is at the very top of the Virtools Dev screen. There are five
menus in Virtools Dev: File, Resources, Editors, Options and Help.

To the right of the Help menu, the menu bar also contains the name of the
current scene and the file name and path of the current composition (CMO).
7-1 The Menu bar.

Below you will find the name of all Virtools Dev menus followed by short
description.

File Menu: file management, open, save and export files.

Resources: resource management, create new data resources, import media.

Editors: additional managers and debuggers.

Options: General Preferences and several useful tools for managing the inter-
face.

Help: the Online Reference and the About... box.

Please refer to the Online Reference (Interface) for further information about
the options within in each menu.
37

2

38

Looking at Virtools Dev

23D Layout
8 3D LAYOUT
The default position for the 3D Layout window is the top left region. 3D Lay-

out consists of a top toolbar, a left toolbar and the rendering window.
8-1 3D Layout

The type of elements and how they appear in the render window depends
greatly on the preferences you have set. See the Online Reference for further
information (Interface/Menu Bar/Options Menu/General Preferences).

Not all tools are visible at all times. For example, the tools for choosing an axis
constraint or planar constraint appear only when you choose either Select and

Translate or Select and Rotate.

Below you can find all the icons contained in the 3D Layout, each icon with its
name and a short description. For further information, including how to use
each tool, refer to the Online Reference (Interface/3D Layout).

8.1 Top Toolbar
Snapshot
Captures all of or a portion of the render window.
39

2

40

Looking at Virtools Dev
3D Layout Explorer
Tool for inspecting all elements in 3D Layout.

Selection Group
Choose an existing selection group or create a new selec-
tion group.

Select Camera
Displays the current active camera, lists all available
cameras.

General Preferences
Opens the General Preferences dialog box.

8.2 Left Toolbar

8.2.1 Selection Tools
Select
Selects elements.
Lock Selection
Toggles lock selection.

Selection Mode
Toggles between normal and strict Selection Mode.

8.2.2 Transformation Tools
Select and Translate
Moves elements.
Select and Rotate
Rotates elements.

Select and Scale
Scales elements uniformly, volumetrically or normally.

23D Layout
Constrain X, Y or Z Axis
Constrains movement to either the X, Y or Z Axis.

NOTE The Constrain Axis icons only appear when either Select and Translate or
Select and Rotate is active.

Constrain Plane
Constrains movement to the XY, YZ or ZX plane.

NOTE The Constrain Plane icons only appear when either Select and Translate or
Select and Rotate are active.

Referential Axis
Selects the referential for translation and rotation operations in
the 3D Layout.

NOTE The Referential Axis icon only appears when either Select and Translate or
Select and Rotate are active.

Toggle Snap
Selects the Snap mode for the movement.

NOTE The Toggle Snap icon only appears when one of the transformation tools is
active.

Toggle Hierarchy
Determines if the movement should apply to the selection’s children.

NOTE The Toggle Hierarchy icon only appears when one of the transformation tools is
active.

Pivot Axis
Determines the pivot point (Object, Local, Selection Center)
for a rotation or scale operation.

NOTE The Pivot Axis icon only appears when either Select and Rotate or Select and
Scale are active.
41

2

42

Looking at Virtools Dev
8.2.3 Reference and Screen Guides
Toggle Reference Guides
Shows/hides the 3D Reference Guides.
Toggle Screen Guides
Shows/hides the Screen Guides.

8.2.4 Creation Tools
Create Camera
Creates a new Camera and opens the Camera Setup.
Create Light
Creates a new Light and opens the Light Setup.
Create 3D Frame
Creates a new 3D Frame and opens the 3D Frame Setup.
Create Curve
Creates a new Curve and opens the Curve Setup.
Create Grid
Creates a new Grid and opens the Grid Setup.
Create 2D Frame
Creates a new 2D Frame and opens the 2D Frame Setup.
Create Material
Creates a new Material and opens the Material Setup.
Create Texture
Creates a new Texture and opens the Texture Setup.
Create Portal
Creates a new Portal and opens the Portal Setup.

NOTE If you do not want a Setup to open when you create an entity, change the set-
tings in the 3D Layout - Interface section of the General Preferences. See
the Online Reference for further information (Interface/Menu Bar/Options Menu/
General Preferences)

23D Layout
8.2.5 Camera Navigation Tools
Camera Dolly
Moves the camera and its target (if any) along the camera’s Z axis.
Camera Field of View
Changes the Camera Field of View.

Camera Zoom
Moves the camera toward its target or away from its target
(Zoom, Zoom on Selection, Zoom on Scene).

Roll Camera
Rotates the camera about the camera’s Z axis.

NOTE The Roll Camera icon only appears when the currently active camera does not
have a target.

Camera Pan
Moves the camera and its target (if any) along the camera’s XY plane.

Orbit Target/Orbit Around
Orbit (rotate around) the selection or rotate the camera about its
own origin.
43

2

44

Looking at Virtools Dev

2Building Blocks and Data Resources
9 BUILDING BLOCKS AND DATA
RESOURCES
The default position for Building Blocks and Data Resources is the top right
region.

Both resources are organized in a tree structure - click the triangle next to an
index in the left pane of the window to expand a branch. The right pane dis-
plays the contents of the branch.
9-1 The Building Blocks (foreground) and Virtools Data Resources (background)

Building Blocks contains the behaviors provided with Virtools Dev and used
by you to make your content interactive. VirtoolsResources is the sample
Data Resource provided with Virtools Dev. VirtoolsResources contain
media data (with or without scripts attached) and Behavior Graphs in file for-
mats that Virtools Dev can use.

Perhaps the most appropriate analogy is to consider Building Blocks as a
library of behaviors, organized by the type of behavior and/or by the type of
element to which the behavior can be attached. Data Resources can be con-
sidered project management tools - you organize your media on a per project
basis, creating a new Data Resource for each project. Of course, you do not
have to use Data Resources in this way - you are free to keep all of your
45

2

46

Looking at Virtools Dev
media in a single Data Resource.

Media data (such as a model, a sound, or an image, etc.) is added to the com-
position by dragging the media from a Data Resource into the 3D Layout or
Level Manager.

Building Blocks (BBs), however, cannot be added in the same manner - they
must also be attached to a Behavioral Object (BeObject). You can either drag a
BB onto a BeObject in the 3D Layout or Level View, or drag a BB directly
into a script in the Schematic.

For more information, see the Understanding Virtools Dev part of this User
Guide and also refer to the Online Reference (Interface/Building Blocks
Resource and Interface/Data Resources).

NOTE If you performed a typical install, the default Data Resources are VirtoolsRe-
sources. You can remove the VirtoolsResources from the display (by right
clicking on the tab and closing the window). You can also create and add your
own Data Resources.

2Level Manager
10 LEVEL MANAGER
The default position for the Level Manager is in the bottom half of the
screen. The Level Manager consists of a top toolbar, a left toolbar and the
main window listing all elements of the Level or Scene by CKClass.
10-1 The Level Manager

The Level Manager helps you to organize your composition, and contains a
wealth of information.

NOTE There are two modes for the Level Manager: Level (the default mode) and
Scene.

Below you can find all icons and buttons contained in the Level Manager,
each icon and button with its name and a short description. For further infor-
mation, including how to use these tools, refer to the Online Reference (Inter-
face/Level Manager).

10.0.1 Top Toolbar
Show/Hide Layer
Shows/hides all items with the Layer flag set.
47

2

48

Looking at Virtools Dev
Expand Selected
Expands the selected branch.
Collapse Selected
Collapses the selected branch.

IC for Selected
Sets Initial Conditions (IC) for the selected elements.

10.0.2 Left Toolbar
Create Place
Creates a new Place.
Create Group
Creates a new Group.
Create Array
Creates a new Array and opens the Array Setup.
Create Scene
Creates a new Scene.
Create Workset
Creates a new Workset or Sub-Workset.
Create Script
Creates a new Script.

Level
Sets the behavioral context to Level mode.
Scene
Sets the behavioral context to Scene mode.
Up
Selects the previous scene.
Down
Selects the next scene.

2Schematic
11 SCHEMATIC
The default position of the Schematic is in the bottom half of the screen,
behind the Level Manager. The Schematic consists of a top toolbar and,
once you have started creating interactivity, scripts.
11-1 The Schematic at start up

NOTE The Schematic usually contains scripts (without scripts, you cannot have any
interactivity!). See “Behaviors and Scripts” on page 107 and the Online Refer-
ence (Interface/Schematic) for further information on scripts.

The Schematic allows you to manage and edit your scripts. Scripts contain the
interaction of a composition; scripts visually describe behaviors.

NOTE You do not actually create scripts in the Schematic. New scripts are created in
the 3D Layout or Level Manager and interactivity is assembled in the Sche-
matic.

Below you will find all icons and buttons contained in the Schematic, each
icon and button followed by its name and a short description. For further
information, including how to use these tools, refer to the Online Reference
(Interface/Schematic).
49

2

50

Looking at Virtools Dev
11.0.1 Top Toolbar
Expand Selected Scripts
Expends the selected Scripts.
Collapse Selected Scripts
Collapses the selected Scripts.
Schematic Explorer
Opens the Schematic Explorer displaying the contents of the Sche-

matic. As your compositions grow, the Schematic Explorer becomes
an increasingly useful tool for managing the elements of your composition

Message Explorer
Opens the Message Explorer, displaying a list of messages, senders
and receivers.

Link
Activates link mode.
Show All
Displays all Scripts.
Hide All
Hides all Scripts.
Hide Selected
Hides selected Scripts.
Hide Other
Hides unselected Scripts.

Show/Hide Local Parameters
Toggles display of local parameters.
Show/Hide Script Header
Toggles display of the script header (the left part of the script).
Show/Hide Control Points
Toggles display of link control points.

2Schematic
Show/Hide Link Delays
Toggles display of link delays.
Edit Default Link Delay
Edits the default link delay.
Show/Hide Priorities
Toggles display of priorities.
Reset Schematic Zoom and Position
Resets the Schematic zoom factor to 1.
Zoom Mode
Modifies the zoom factor.
Script Debugger
Opens the Script Debugger.

Trace Mode
Toggles trace mode.
51

2

52

Looking at Virtools Dev

2Status Bar
12 STATUS BAR
The Status Bar is at the very bottom of the Virtools Dev screen.
12-1 The Status Bar.

The Status bar displays useful, context-dependent information. The Status

Bar also contains five icons.

Below you will find an image of these information fields or icons, followed by
the name and a short description. For further information, including how to
use these tools, refer to Online Reference (Interface/Status Bar).

Selection
Displays the name of selected element.

Action
Displays the name of the action you are perform-
ing.

Coordinates
Displays the XYZ coordinates of a selected object.

Event Log
Opens the Event Log. Ongoing Event
Log messages are displayed next to

the Event Log icon as they occur.
Profiler
Opens the Profiler.

FPS (Frames Per Second)
Displays the current number of frames per second; displays NA
while in Author mode and updates continually in Play mode.
53

2

54

Looking at Virtools Dev
Reset IC (Initial Conditions)
Resets all Initial Conditions.

Play/Pause
Plays or pauses the composition.

Advance One Step
Causes the behavioral engine to process one frame only.

3

PART 3 - 3D SPACE IN
VIRTOOLS DEV

3D Space in Virtools Dev describes how Virtools Dev creates its 3D space
and the rules that govern it. Just how can you have a 3D space on a 2D screen?

This part is essential reading for those new to 3D and recommended for those
who have been working in 3D for some time. Concentrating on the basic con-
cepts of 3D, and how they are expressed in Virtools Dev, this part starts off
nice and easy and before you know it, you are done!

If you can't get enough of vectors and matrices, there are one or two sections
in the Appendix that will interest you too.

 13 Virtools Dev and 3D Graphics - some basic terminology to get
you started
 14 Coordinate Systems - how Virtools Dev measures things, con-
trols position and controls orientation; the basics of the mathematics
behind the scenes
 15 Transformations - how to translate, rotate, and scale with a mini-
mum of mathematics
 16 Matrix Operations - a brief introduction to the mathematics
behind transformations
 17 Worlds and Levels, Places and Scenes - how Virtools Dev
implements classic game constructs
 18 Cameras and Rendering - how Virtools Dev decides what to
show in the render window
 19 The Render Engine - an overview of the Virtools Dev rendering
architecture
55

3

56

3D Space in Virtools Dev

3Virtools Dev and 3D Graphics
13 VIRTOOLS DEV AND 3D
GRAPHICS
With Virtools Dev, you can create a virtual world called a composition (CMO). A
composition is an arrangement of one or more elements and their associated
behaviors.

The term element is used as a generic label for any “thing” within a composition
that is not a behavior (not a Building Block (BB), Behavior Graph (BG), or
Script). For example, elements are often items that have a physical presence in
a composition; an element can often be seen when a composition is played
(e.g. a character). However, elements can also be abstract and used to define
logical associations (e.g. members of a group, an array) or data sets (e.g. the
data points that define the vertices used to render a character, the description
of an animation sequence).

A behavior is a description of how an element responds to some form of input
stimulus. Applying a behavior to an element makes the element interactive,
either with

• the User, or
• other elements of the composition.

You are invited to review the materials contained in the Virtools Dev Glossary
and to refer to the Glossary any time you see a term that has a specific mean-
ing within Virtools Dev.

To be effective at creating real-time, interactive 3D content with Virtools Dev,
you should understand some of the basic principles of 3D graphics and how
Virtools Dev implements them.
57

3

58

3D Space in Virtools Dev

3Coordinate Systems
14 COORDINATE SYSTEMS
Coordinate systems define the space or volume of a simulated environment
(called a Level in Virtools Dev, often called a World in other products).

Virtools Dev uses two coordinate systems: a 2D coordinate system for screen
positions and a 3D coordinate system for rendering 3D elements.

14.1 The 2D Coordinate System
2D coordinate systems are defined by two axes, at right angles to each other,
that define a plane (called the XY plane). The X axis is horizontal, the Y axis is
vertical, and the point at which the two axes intersect is the origin of the 2D
coordinate system.

In Virtools Dev, 2D operations typically affect the placement of some element
on the screen (e.g. the position of the player’s score). Therefore, 2D coordi-
nates are also known as screen coordinates, and the origin for all 2D operations is
set to the upper left corner of the screen.
14-1 2D Coordinate Systems

A position on the screen is defined by a point. A position is expressed as (X,Y)
where:

1. X = the horizontal displacement of the point from the origin, and
2. Y = the vertical displacement of the point from the origin.

For example, 14-2 illustrates a 2D point with coordinates (1,2).
59

3

60

3D Space in Virtools Dev
14-2 A 2D point

The value of a 2D Coordinate can be expressed in:
• pixels, known as absolute coordinates, or
• normalized values (from 0.0 to 1.0) that are scaled to the actual screen

resolution, known as homogeneous coordinates or as relative coordinates.
Homogeneous coordinates offer greater portability for compositions
because the screen elements are automatically scaled to match the
screen.

14.2 The 3D Coordinate System
The 2D coordinate system introduced above can be extended to three dimen-
sions to take into account not just height and width but also depth.

3D coordinate systems are defined by three axes, where each axis is at right
angles to the other two axes. The point at which the three axes intersect is the
origin of the 3D coordinate system, also known as the origin of the world coordi-
nate system.

Together, the three axes define three planes:
1. the XY plane where Z is a constant value,
2. the XZ plane where Y is a constant value, and
3. the YZ plane where X is a constant value.

3Coordinate Systems
NOTE The center of the world coordinate system is not necessarily the center of the
visible elements in the Level. You can place the visible elements of your compo-
sition at any position that you choose, not just centered about the origin of the
world coordinate system.

14.2.1 Units of Measurement

The Virtools Dev default units of measurement are expressed in the metric
system. That is, one unit in the default 3D coordinate system corresponds to
one meter in the real world. However, there is no enforcement of this relation-
ship within Virtools Dev; you are free to build your models to any scale that
you choose.

There are a number of reasons for building your models to true scale:
1. You greatly reduce the probability that your models will require

changes within Virtools Dev; the relative sizes of your models will be
as expected.

2. The hardware support in video cards is of fixed precision. If your
models are created at greatly inflated scale (e.g. a person modeled as
1,000 units tall), then your video card is likely to exhibit rendering arti-
facts – particularly with respect to depth sorting.

3. There are a number of highly optimized collision detection mecha-
nisms within Virtools Dev that require that obstacles be set to a unit
scale factor (scale = 1) for best performance.
The scale factor is a measure of the current size of the model relative
to the size of the model at the time the model was brought into Vir-
tools Dev. Therefore, the scale factor is independent of the actual size
of the model, as expressed in World units.

NOTE Virtools Dev provides a mechanism to reset the scale factor of a model to unit
scale after resizing but it is easier if the model is built at the correct size from
the start.

NOTE There is no mechanism to reset the scale factor of a Character to unit scale.
61

3

62

3D Space in Virtools Dev
14.2.2 3D Coordinates

A 3D coordinate is a position in a 3D coordinate system (i.e. within a level),
expressed as (X,Y,Z) where:

1. X is the horizontal displacement of the point from the origin,
2. Y is the vertical displacement of the point from the origin, and
3. Z is the depth displacement of the point from the origin (the displace-

ment into or out of the screen).

For example, 14-3 illustrates a 3D point with coordinates (4,4,4).
14-3 A 3D Point

14.2.3 Vectors

Direction (such as the direction a character is facing) and length (such as the
distance between two elements in a level) are expressed as vectors. A vector is
expressed as (X,Y) for vectors within a 2D coordinate system (called a
Vector2D in Virtools Dev) and expressed as (X,Y, Z) for vectors within a 3D
coordinate system (called a Vector in Virtools Dev).

3Coordinate Systems
NOTE The syntax for expressing points and vectors is identical! Therefore, you must
always be careful to determine the context when presented with a value in the
form (X, Y, Z).

14.2.4 Local Coordinate System, Relative Coordinate Sys-
tem

Every 3D Entity has a local coordinate system that is set by the person who
created the 3D Entity. The local coordinate system defines the origin for the
3D Entity and the vectors that form the axes of the local coordinate system.

Typical locations for the origin of the local coordinate system are at
1. one corner of the bounding box (the minimum rectangular volume

that encloses the 3D Entity), and
2. the geometric center of the 3D Entity (also known as the Barycenter).

Other locations for the origin of the local coordinate system are possible, Vir-
tools Dev places no restrictions on the origin of the local coordinate system.
14-4 Bounding Box and Barycenter of a 3D Entity, with the origin of the local coordinate
system marked

For example, the origin of the character’s local coordinate system may be set to
the heel of the character’s left foot. The positions of the various body parts are
then defined relative to the origin of the local coordinate system. The right
foot might be 0.3 units from the origin in the positive X direction (+X) and
the head might be 0.15 units in the positive X direction (+X) and 1.5 units in
63

3

64

3D Space in Virtools Dev
the positive Y direction (+Y).
14-5 Character showing local origin

The position, orientation and scale of an element in the local coordinate sys-
tem are stored in a data structure called the local matrix.

14.2.5 World Coordinate System, Absolute Coordinate
System

Virtools Dev also defines a default world coordinate system, a set of axes that
are shared by all elements of the composition. The world coordinate system is
used as a common reference point for all elements of a composition.

The position, orientation and scale of an element in the world coordinate sys-
tem are stored in a data structure called the world matrix.

Matrix concepts are addressed in greater detail later in “Matrix Operations” on
page 71 and “Example Transformations” on page 219.

14.2.6 Referential Axes, Referential

When 3D transformations are applied to an element of a composition, there

3Coordinate Systems
must be some point of reference for those transformations. In Virtools Dev,
the point of reference is called the referential.

The referential is most commonly used as a parameter input (pIn) to a Build-
ing Block (BB). The referential is expressed as the name of some element in
the composition.

Within Virtools Dev, the world coordinate system is identified by the special
term --NULL--. The local coordinate system of any element is identified by the
name of the element.

For example, you may want to position an element at (5,0,0) in the world coor-
dinate system. In this case, the referential is the world coordinate system (--
NULL--).

Alternatively, you may want to position an element at (5,0,0) relative to that
element’s current position (independent of where the element is within the
Level). In this case, the referential is the name of the element.

Finally, you may want to position a first element at (5,0,0) relative to a second
element’s current position (independent of where the second element is within
the level). In this case, the referential is the name of the second element.

14.2.7 Orientation

Every 3D Entity also has an orientation. The orientation of a 3D Entity (includ-
ing Characters) is defined by three vectors:

1. The Right vector.
From the 3D Entity’s perspective, the Right vector points to the right.
The default Right vector for a 3D Entity is the positive X axis of the
local coordinate system.

2. The Up vector.
65

3

66

3D Space in Virtools Dev
From the 3D Entity’s perspective, the Up vector points in the direction
that the 3D Entity considers as Up. The default Up vector for a 3D
Entity is the positive Y axis of the local coordinate system.

3. The Dir vector.
From the 3D Entity’s perspective, the Dir vector points in the direc-
tion that the 3D Entity considers as the forward or facing direction.
The default Dir vector for a 3D Entity is the positive Z axis of the
local coordinate system.

Together, the default values for the Right, Up, and Dir vectors define the Vir-
tools Dev default 3D coordinate system. The association of the Right, Up, and
Dir vectors with the X, Y, and Z axes respectively is known as the default orien-
tation.
14-6 Default Orientation

NOTE The concept of a default orientation for a 3D Entity is a recommendation for
ease of use only. You may use any orientation for a 3D Entity.

14.2.8 Orientation and the Referential

Orientation is further affected by Virtools Devs use of a Referential for trans-
lation and rotation.

For example, assume that you have two elements in a composition, oriented as
shown in 14-7. Element 1 has a local coordinate system that defines the X-axis
as the facing direction (the local Dir vector = (1,0,0)). Element 2 has a local
coordinate system that defines the Z-axis as the facing direction (the local Dir

Z

DIR

Y

X

UP

RIGHT

3Coordinate Systems
vector = (0,0,1)). Both elements have the expected Up vector of (0,1,0) and
both elements face in the direction of the world’s X-axis.
14-7 Orientation and the Referential

-Z

X

Z

Local Dir

Local Right

Element 1

X

Z

-X

Local Dir

Local Right

Element 2

-X X

Z

Default Right

Default Dir

World
67

3

68

3D Space in Virtools Dev
NOTE All coordinate systems in 14-7 are viewed from above with the positive Y-axis
toward the reader.

Imagine that you are using Translate (3D Transformations/Basic) to move
Element 1 forward five units. You assume that this means a translation vector of
(0,0,5) because you know that this assumption complies with the Virtools Dev
default orientation. What happens when you try to Translate Element 1?

If you try to translate Element 1 with a referential of:
1. --NULL--, then Element 1 moves 5 units in the direction of the world’s

Z-axis, independent of the facing direction of Element 1. Element 1
appears to move to its left.

2. Element 1, then Element 1 moves 5 units in the direction of Element
1’s Z-axis, independent of the facing direction of Element 1. Element 1
appears to move to its left.

3. Element 2, then Element 1 will move 5 units in the direction of Ele-
ment 2’s Z-axis, independent of the facing direction of Element 1. Ele-
ment 1 appears to move forward, in the expected direction.

Had all elements shared a common orientation, the result would have been
identical in all cases. There is a sample CMO, Orientation and the Referen-

tial.cmo in Documentation\Cmos\FinishedCmos that illustrates this orienta-
tion and referential example.

While not strictly necessary, designing your elements to share a common ori-
entation can simplify the task of adding interactivity to a composition.

See “Controlling the Orientation of an Element” on page 217 in the Appendix
of this User Guide for further information on controlling the orientation of an
element.

NOTE The orientation vectors are not constrained to unit values or a single unit value.
For example, the orientation vector (3.5, 5.2, 1.9) is valid.

3Transformations
15 TRANSFORMATIONS
Transformations are simple operations that can be performed on an element:

1. Translation – move the entity.
2. Rotation – change the facing direction of the entity.
3. Scale – change the size of an entity.

You can perform transformations on elements in Author mode by using the
transformation tools in 3D Layout, or changing the parameters for an element
in its Setup. Alternatively, you can use transformation BBs.

Transformations are always performed relative to a referential entity. The ref-
erential entity can be the entity itself, the world coordinate system, or any
other entity in the world that has a local coordinate system. 15-1 summarizes
the most common transformation BBs.
15-1 Transformation BBs

Translation

Translate Move the target entity, relative to the referential entity,
within the current frame.

Move To Move the target entity, relative to referential entity, over a
specified number of frames or over a fixed period.

Rotation

Rotate Rotate the target entity about the local origin (the origin
of the target entity’s local coordinate system), according
to an axis defined relative to the referential entity coordi-
nate system

Rotate Around Rotate the target entity about the referential origin (the
origin of the referential entity’s local coordinate system),
according to an axis defined relative to the referential
entity coordinate system
69

3

70

3D Space in Virtools Dev
Scale

Scale Change the size of the target entity. The new size can
specified as Absolute (in the world coordinate system) or
as Relative (in the target entity’s local coordinate system)

3Matrix Operations
16 MATRIX OPERATIONS
Matrix operations provide the greatest degree of direct control over transfor-
mations. However, you do not have to use matrices to manipulate the elements
of your composition. Virtools Dev provides many BBs (e.g. Translate,
Rotate, Scale, and Set Position (all in 3D Transformations)) that allow you to
manipulate the elements of your composition without matrices.

Matrices are shown differently in the Edit Parameters dialog box, as shown in
16-1, and in the Parameter Debugger, as shown in 16-2.

16-1 A matrix in the Edit Parameters dialog box

16-2 A matrix in the Parameter Debugger

For greater legibility, in the Parameter Debugger the format is
[Right] [Up] [Dir] [Position]

A selection of example transformations in matrix form is provided in the
Appendix of this User Guide.

Further details of matrix manipulation are beyond the scope of this User
Guide but can be found in most reference materials for Linear Algebra.
71

3

72

3D Space in Virtools Dev

3Worlds and Levels, Places and Scenes
17 WORLDS AND LEVELS, PLACES
AND SCENES
What is the difference between a World and a Level? What is a Place and a
Scene? For many people, their first exposure to these terms is when playing a
computer game. You play a game in a World that is divided into Levels – usu-
ally because the computers available to the target market for the game do not
have the memory capacity to keep the entire World in memory at one time.
The Levels in the World are often divided geographically; each Level occurs in
a different location within the World. Sometimes, the Levels are mission based;
the location may not change but the way the elements within the World act and
interact does change.

Virtools Dev provides support for these models, as illustrated in 17-1.

17-1 Worlds and Levels in Virtools Dev

The Level is the ancestor element for all parts of a composition. As an ele-
ment, the Level has the special name --NULL-- when used as a referential.

A Place is an abstract element used to identify the elements found within a
physical locale in a composition. For example, within a building, each room
can be defined as a separate Place.

A Scene is an abstract element used to define the elements within a narrative
unit of a composition and is not restricted to a physical locale within a compo-
sition. Scenes can be used to control which elements are active at what time: in
this part of the story, only these elements are active whereas in that part of the
story only those elements are active.

Computer Game Virtools Dev
World Level

Level (geographically distinct) Place
Level (mission based) Scene
73

3

74

3D Space in Virtools Dev
Places and Scenes are mechanisms used to organize the media within your
composition and to optimize the performance of your composition. The ele-
ments within a Place or a Scene can be made Active or Inactive. Only active ele-
ments are processed; significant performance gains can be realized through
the proper application of Places and Scenes.

3Cameras and Rendering
18 CAMERAS AND RENDERING
The process of converting a Virtools Dev composition into a screen image is
called rendering. One or more cameras are used, just like in a movie, to define
points of view within a Level.

Each camera has a number of characteristics that can be controlled by the
Author, including position, focal length, and field of view. The type of projection
used by a camera can also be controlled.

A camera using a perspective projection acts like a camera in the real world –
images show perspective: objects become smaller with increasing distance and
parallel lines converge at the horizon.

A camera using an orthogonal projection does not perform perspective cor-
rection – objects remain the same size no matter their distance from the cam-
era and parallel lines remain parallel no matter the distance from the camera.
Computer games that scroll from one side of the screen to the other typically
use an orthogonal camera.

You might ask why there are two projections. Rendering an image with proper
perspective is much more difficult (and requires a lot more processing power)
than rendering an image with orthogonal projection.

18.1 Depth of Field, Z buffering
Creating a virtual world that can be rendered in real time is a form of simula-
tion. As just discussed, Virtools Dev uses cameras to control the point of view
in a level. One area where the camera simulation is less accurate is depth of
field. In a real camera, only certain objects in a scene are sharply focused. The
distance at which objects are in perfect focus is called the focal plane and the
region about the focal plane where a viewer can not detect any lack of focus is
called the depth of field. Objects that are too close to the camera or too far
from the camera are out of focus and indistinct.
75

3

76

3D Space in Virtools Dev
In a computer simulation of a camera, it is much faster to assume that the
camera has a lens with an infinite depth of field so that all objects in a scene,
no matter their distance from the camera, are in perfect focus.

If everything is perfectly in focus, how does an individual determine what
objects are closer or farther away? Generally, an individual relies upon visual
cues (such as the relative sizes of objects or whether one object obstructs the
view of other objects) to determine what is near and what is far.

Virtools Dev uses a technique called a depth sort on the rendered objects to
determine whether one object should obstruct the view of another object.
Given that the Z axis is Virtools Dev’s default depth axis, it should not be sur-
prising to learn that the hardware support for depth sorting within a video
card is known as the Z Buffer.

In most cases, when rendering 3D Entities you will not be concerned with
direct control of the Z Buffer. After all, determining what is visible and where is
one of the principal jobs of the rendering engine.

However, when rendering 2D Entities you will often be concerned with the
rendering order. 2D Entities are most often used for fixed visual elements
within a composition such as the current score, control panels and menus, and
background images. 2D Entities such as the score and menus need to be
drawn in front of the 3D elements of the composition. Background images,
however, need to seem to be behind all of the 3D Entities and behind all of the
foreground 2D Entities such as the score. To achieve this effect, the Virtools
Dev rendering order is:

1. 2D elements that are defined as being in the background.
2. 3D elements within the view.
3. 2D elements that are defined as being in the foreground.

You can control whether a 2D Entity is rendered in the background or in the
foreground. Within the background or the foreground you can also control
the order in which 2D Entities are drawn. In all cases, you can easily control

3Cameras and Rendering
what will be drawn when by remembering that smaller numbers (including nega-
tive values) mean further away and larger numbers (more positive) mean
closer. 2D Entities that are farther away are drawn before 2D Entities that are
close.
18-1 Z order number and rendering order, relative to the active Camera.

Closest element Furthest element
Z order number 32767 0 -32768
77

3

78

3D Space in Virtools Dev

3The Render Engine
19 THE RENDER ENGINE
The Render Engine is the part of Virtools Dev that draws the image you see
on-screen. There are actually two components to the Virtools Render Engine,
either of which can be replaced or customized using the Virtools Dev SDK:

1. The Render Engine - CK2_3D
2. The Virtools Rasterizers, providing support for DirectX 5, DirectX 7

and OpenGL

19.1 The Render Engine – CK2_3D
The Virtools Render Engine is a 3D engine abstraction, as its API is indepen-
dent of specific 3D hardware and software. This abstraction isolates the rest of
Virtools Dev (with the exception of the Rasterizer), and especially the Behav-
ioral Engine, from the details of 3D implementation.

The Render Engine decides what should be drawn, but does not actually draw
the image itself. Based on information supplied by the Behavioral Engine
(CK2), the Render Engine develops a list of all items that can be seen.

The list of visible items is then provided to the Rasterizer for drawing on-
screen.

19.2 Virtools Dev Rasterizers
The Rasterizer defines an Application Programming Interface (API) that
abstracts the rendering hardware and associated APIs.

The Rasterizer that you or the User can use depends on the capabilities of the
graphics card being used.

The Rasterizer deals with polygons, textures and rendering settings. Given
these 3D elements, the Rasterizer draws one 2D image intended to be shown
on screen. Thus, the Rasterizer implements the performance critical last phase
79

3

80

3D Space in Virtools Dev
of the rendering process.

Virtools Dev implements a Rasterizer for three different 3D APIs: DirectX5,
DirectX7, and OpenGL.

4

PART 4 - UNDERSTANDING
VIRTOOLS DEV

Understanding Virtools Dev explains (almost) all you ever wanted to know
about Virtools Dev but didn't know who to ask. This part answers questions
like: Is it possible to have more than one level in a composition? and Why can some behav-
iors only be applied to certain elements?

Whatever your experience level, this part is essential reading for everyone. You
could get along working in Virtools Dev without reading this part, but why
make things hard for yourself ?

 20 Elements, Classes, and Object Oriented Design - explores and
explains the relationships between the elements of a composition
 21 The Elements of a Composition (CMO) - the pieces that you
assemble to form a composition
 22 The Virtools Dev Process Loop - an introduction to processing
behaviors and rendering the results
 23 The Behavioral Engine - how the Behavioral Engine decides
what to do, and when
 24 Behaviors and Scripts - the Virtools Dev approach to program-
ming and program flow control
 25 Parameters - script variables in Virtools Dev, there is more here
than meets the eye at first glance
 26 Parameter Operations (paramOps) - an introduction to the data
manipulation tools
 27 Attributes - element variables in Virtools Dev
81

4

82

Understanding Virtools Dev

4Elements, Classes, and Object Oriented
Design
20 ELEMENTS, CLASSES, AND
OBJECT ORIENTED DESIGN
Virtools Dev organizes elements into classes. Elements include the media you
bring into Virtools Dev (models, sounds, animations, etc.) and the things you
create in Virtools Dev (such as Curves and Scenes).

Essential topics in this section include:
• How Virtools Dev classifies media.

For example, there is a Light class of objects in Virtools Dev to which
all lights belong. Each light is an instance of the Light class, and has
characteristics such as its color and its range.

• Why certain operations are only possible on certain elements (classes).
For example, only characters can use character animations.

• Why other operations can be applied to all elements.
For example, all elements can be activated or deactivated.

This section presents a simplified version of the Virtools Dev class system.
You can find a more detailed description of the Virtools Dev class system in
the SDK documentation.

20.1 Object Oriented Design
Virtools Dev takes an Object Oriented approach to building a composition (a
CMO file). That is, every element is an instance of a unique class where each
unique class is described by a class definition. The term CKClass is used as a
generic label for any class or class definition used by Virtools Dev. 20-1 illus-
trates the Virtools Dev class hierarchy.

Elements are controlled using methods encapsulated within behaviors and
parameter operations.
83

4

84

Understanding Virtools Dev
20-1 A simplified version of the Virtools Class Hierarchy

For example, there is a CKClass called CKCharacter. Only CKCharacters can
use the behaviors specifically designed for characters (such as the Character
Controller).

The object oriented nature of Virtools Dev means that everything you import
into Virtools Dev (the elements in the form of models, sounds, etc.) becomes
an instance of a CKClass. Also, anything that you create in Virtools Dev (from
a camera to an array) becomes an instance of a CKClass as well.

Render Object

Behavioral Object

3D Entity 2D Entity

3D Object Sprite

Body Part Sprite Text

Light

Light Target

Camera

Camera Target

Character

3D Sprite

Grid

Curve

Curve Point

Level

Scene

Place

Group

Array

Sound

Midi Sound

Wave Sound

Mesh

Material

Texture

4Elements, Classes, and Object Oriented
Design
20.2 Inheritance
One advantage of using a class hierarchy is the principle of inheritance. That is,
any element has its own unique characteristics and the element inherits the
characteristics of all of its ancestor classes.

For example, the class CKLight descends from
1. CK3DEntity, which descends from
2. CKRenderObject, which descends from
3. CKBeObject.

Therefore, a light has special characteristics that apply only to objects of the
CKLight class – characteristics like:

• the type of light (point, directional, etc.)
• the color of the light (white, red, etc.)
• the range over which the light is visible

These characteristics can be changed via the light’s setup or via a behavior.

Secondly, a light is a 3D Entity, which means it has inherited the characteristics
of a 3D Entity– characteristics like position and orientation in the 3D space.
Since a light is also a 3D Entity, any behavior that can be applied to a 3D
Entity can also be applied to a light.

Thirdly, a light is a Render Object, which means that it can be rendered (seen
in playback). Since a light is a Render Object, any behavior that can be applied
to a Render Object can be applied to a light.

Finally, a light is a Behavioral Object, which means that it can have a behavior
attached to it (some Virtools Dev classes, such as classes that store internal
data only, can not have behaviors attached to them). Since a light is a Behav-
ioral Object, any behavior that can be applied to a Behavior Object can be
applied to a light.

For more information on the specific properties of a class, see the Setup for
85

4

86

Understanding Virtools Dev
that element in the Online Reference.

20.3 Specialization
Virtools Dev supports the specialization of inherited behaviors so that the
behaviors can be optimized for a specific task (also known as polymorphism).
For example, moving a 3D Frame is much simpler than moving a Character so
the behavior for moving a 3D Frame can be optimized for the simpler task.

Optimized behaviors reduce the computing time for a given task resulting in a
composition that is smaller, that is more responsive to user input, and that ren-
ders at an acceptable frame rate.

20.4 Aggregation
Virtools Dev supports aggregation, the logical relationship between elements
where a first element is a part of a second element yet both elements are dis-
tinct.

For example, if you look at the 3D Object Setup in 20-2, you can see a col-
umn labeled Object Meshes. A 3D object may have several meshes, although
only one mesh may be active at a time.
20-2 3D Object Setup with Mesh column circled

If you look at the Mesh Setup in 20-3, you can see a column labeled Materi-

4Elements, Classes, and Object Oriented
Design
als Used. A mesh may have several materials, several of which may be active at
a time.
20-3 Mesh Setup with Materials column circled

If you look at the Material Setup in 20-4, you can see a field labeled Texture.
A material may have only one texture.
20-4 Material Setup with Texture circled

Therefore, the elements that form a 3D entity (whether it be an object, a char-
acter, etc.) are related, yet each element remains independent. In this example,
a Texture is part of a Material, a Material is part of a Mesh, and a Mesh is part
of a 3D Object.

Because each element remains independent, the characteristics of each ele-
ment (in this example, the object's mesh, material, and texture) can be changed
87

4

88

Understanding Virtools Dev
quickly and easily. In fact, the entire element can be exchanged with another
compatible element! For example, you could change a 3D Object's Mesh,
Material, or Texture – or any combination of these without changing the fact
that the 3D Object exists.

NOTE If you change the mesh on a Character, it is very likely that your Animations will
no longer work as expected.

20.4.1 Run-time Aggregation, The Scene Hierarchy

A Scene is the set of elements that are currently active at runtime. The ele-
ments within a Scene are organized into a scene hierarchy.

Virtools Dev supports a special form of aggregation within the scene hierar-
chy. At runtime, relationships between elements can be established via Set

Parent and Add Child (both in 3D Transformations/Basic). Run-time aggre-
gation allows you to establish relationships between an arbitrary set of 3D
Entities, typically for the purpose of simplifying the application of transforma-
tions to the set of 3D Entities.

For example, even though it would be easier to do in a modeling application,
using Set Parent and Add Child you could construct a car as a hierarchy of
3D Entities: a car has doors, a body, and wheels. Once the hierarchical rela-
tionship is established, transformations on the car automatically transform the
children of the car: the doors, body, and wheels.

NOTE Set Parent and Add Child establish relationships within the scene hierarchy
only and not within the CKClass hierarchy. These relationships remain after a
composition stops playing unless Initial Conditions (ICs) are set on the affected
elements before Set Parent or Add Child are activated.

20.4.2 Sharing Elements

Virtools Dev's support for aggregation allows you to share elements such as
sounds, animations, meshes, materials and textures throughout your composi-
tion.

4Elements, Classes, and Object Oriented
Design
For example, two chairs could share the same mesh, material, and texture – the
chairs would appear to be identical and would differ only in name. However,
the chairs could have the same mesh, but have different materials and textures
– the chairs would then have the same form, but look different.

Sharing elements can greatly reduce file size and the work-load for CPUs and
graphic cards. Reducing the number of elements in a composition also makes
managing the development of your composition easier.

20.5 Association
Association allows Virtools Dev to create a logical relationship between ele-
ments that are not directly related through a parent-child inheritance relation-
ship in the CKClass hierarchy. Objects that are associated communicate with
each other but remain distinct in all respects.

For example, a character is often associated with a Group of 3D Entities for
the purpose of collision detection, management, and prevention.
89

4

90

Understanding Virtools Dev

4The Elements of a Composition (CMO)
21 THE ELEMENTS OF A
COMPOSITION (CMO)
21-1 shows the Virtools Dev class hierarchy slightly differently than in 20-1 on
page 84. Comments have been included to help you place each CKClass in
context with respect to the other CKClasses. Indentation indicates that the
indented label is a child of the closest previous level of indentation. For exam-
ple, a 2D Entity and a 3D Entity are children of RenderObject. Sprite Text is a
not a child of RenderObject but Sprite Text is a descendent of RenderObject.

You can find a complete description of Virtools Dev classes in the Online Ref-
erence.
21-1 Elements of a composition, according to type and arranged alphabetically

BeObject - an Object to which a behavior can be applied
RenderObject - an object that is rendered (can be seen in Play
mode)

2D Entity - an object that has width and height but no depth
Sprite Text - a 2D Entity used to place text in the
render window

3D Entity - an object that has width and height and depth
Character – a type of 3D Entity that acts as an
intelligent entity, directed by the user or by soft-
ware

Objects that may be visible but usually are not
Camera – an object that defines a point of view
Curve - a set of 3D Entities that define a curve in 3D space
Grid – a 2D data set whose value depends on 3D coordi-
nates
Light – an object that provides illumination

Objects that are not visible (abstract, data sets, associations)
Array – a data set expressed as a table
91

4

92

Understanding Virtools Dev
21.1 The Behavioral Object (BeObject)
While behaviors are the central concept in Virtools Dev, they are of no use if
they are not attached to elements. Note that all entries in the simplified view of
the Virtools Dev class hierarchy descend from the Behavioral Object
(CKBeObject) class. Objects instantiated from these classes (descendants of
CKBeObject) are the objects that can have behaviors attached to them, but
they are not required to have behaviors.

When a BeObject has behaviors attached, the BeObject is said to be the owner
of these behaviors.

NOTE The owner of a behavior is not always the target of the behavior. The behaviors
attached to a BeObject may affect the owner or they may affect other objects.

21.2 The Level
A Level can be described as the

• global container for all objects of the composition
• root of all elements in a composition
• ancestor or parent of all elements in a composition

Group – an arbitrary collection of elements with no restric-
tion as to type
Level – the parent object of the entire composition
Material – the surface characteristics of a mesh
Mesh - the set of vertices that define the shape of an object
Place – a collection of geographically related objects
Scene – a collection of temporally related objects
Sound – a sound stored in digital form
Texture – an image used to provide fine detail on the sur-
face of an object

4The Elements of a Composition (CMO)
There is only one Level in a composition. The Level can contain one or more
Scenes and zero or several Places to organize your composition into manage-
able portions.

NOTE The Level always contains at least one scene: the Level Scene.

A Level is a BeObject. Therefore, behaviors and attributes can be attached to
the Level. Level scripts are typically used to manage Scenes, Places and other
elements needed across several scenes (such as Arrays).

NOTE Scripts attached to the Level are automatically attached to all Scenes.

21.3 Scenes
A Scene in Virtools Dev is just like a scene in the movies:

• only one Scene is filmed (active) at a time - the director can only be in
one place at a time!

• only the actors (elements in Virtools) in that scene are active - every-
one else must wait their turn

• only those active in the scene are filmed by the camera (in Virtools,
only active elements are processed by the Behavioral Engine and ren-
dered)

The elements that are not members of the active scene are, by definition, inac-
tive. They are not rendered and their scripts are not processed.

Therefore, scenes are the perfect way to segment compositions into large scale
narrative elements or large time-based periods. Scenes are very useful when
working in collaboration with other people: each person can work on a specific
scene, which can then be saved as a CMO and later merged into one CMO via
Merge Composition as New Scene (File menu).

The Level Scene (containing all the objects of the Level) is made the active
scene of the Level at start-up. When a new scene is made active (started), the
previously active scene is automatically deactivated.
93

4

94

Understanding Virtools Dev
A Scene is a BeObject. Therefore, behaviors and attributes can be attached to
the Scene.

Scenes contain references to elements, not copies of elements or the elements
themselves.

21.4 Places and Portals
Just as Scenes are a way to organize time segmentation within a Level, Places
are a way to organize space segmentation in a Level or Scene. There may be
zero or more places in a Level. There is no specific link between Scenes and
Places.

Places are part of the 3D Entity hierarchy and may contain zero or more 3D
Entities. Each Place is deemed the Parent of all 3D Entities within the Place.

Places and Portals are used to optimize the rendering phase. The decision of
what to display is done relative to the active camera. When the Portal system is
active, via Portal Management, the rules are as follows:

1. Before each rendering process, the list of Places spatially containing
the active camera (including the view frustum) is computed using the
Places bounding boxes.
These Places, and all the Places that have a Portal with these Places
(and all the Places that have Portals with these Places, etc. (recur-
sively)), are considered to be potentially visible and processed by the
renderer.

2. If an element is not a member of one of these places, the element is
not rendered. The element is immediately considered "out-of-view"
(even though the element may be active and its behaviors may be exe-
cuted).

3. If the Portal system is not active, there is no optimization of the ren-
dering by Places and Portals (every 3D Entity is considered potentially
visible and only a hierarchical culling of the scene hierarchy to deter-

4The Elements of a Composition (CMO)
mine the potentially visible set of elements is performed), but Places
may still be used to hierarchically organize 3D Entities for other pur-
poses.

Places are also very useful when working in collaboration with other people:
each person can work on a specific Place, which can then be saved in a Vir-
tools Object File (NMO) and added to a CMO.

A Place is a BeObject. Therefore, behaviors and attributes can be attached to
the Place.

21.5 Abstract Elements
Abstract Elements are data structures used by Virtools Dev to store informa-
tion and to describe relationships between elements.

21.5.1 Groups

Groups are the simplest yet most powerful organizational entity of Virtools
Dev. Groups are ordered lists of Behavioral Objects that can implement any
logical association that may be required and are not restricted to containing
elements of the same CKClass or type.

Groups can be created in Author mode or by BBs at run-time. Groups can be
reordered, iterated over, etc. – many standard BBs are provided for group
management.

A Group is a BeObject. Therefore, behaviors and attributes can be attached to
the Group. Groups can be part of other Groups.

21.5.2 Arrays

Arrays are simple tables containing cells organized as rows and columns.
Arrays are organized as typed columns (all the elements of a column must
have the same type).
95

4

96

Understanding Virtools Dev
Arrays support five data types:
1. Integer
2. Floating Point
3. String
4. CKObject
5. Parameters

Arrays can be created in Author mode or by BBs at run-time. Arrays can be
sorted, filtered, searched, iterated over, etc. - many standard BBs are provided
for array management.

An Array is a BeObject. Therefore, behaviors and attributes can be attached to
Arrays.

NOTE The value of a parameter in a script can be stored in an Array via a Parameter
Shortcut. See the Online Reference (Array Setup) for further details.

4The Virtools Dev Process Loop
22 THE VIRTOOLS DEV PROCESS
LOOP
The Virtools Dev process loop, often referred to as a Frame or a Rendering
Frame, is a repetitive process that occurs when you (or a User) play a composi-
tion. Understanding the process loop will help you to create efficient scripts
and smooth running compositions with a satisfactory frame rate.

A satisfactory frame rate is usually defined as a frame rate that supports effec-
tive real-time visualization. Real-time visualization starts with a minimum of 15
images per second, with immersion beginning at 60 frames a second. There-
fore, as an author, you should always attempt to maintain a frame rate of at
least 60 frames per second with a goal of 30 frames per second or more
(approximately the same rate as television).

NOTE Virtools Dev has more processing to perform than a standard Player. Therefore,
frame rates in Virtools Dev will be slightly lower than the frame rates in a stan-
dard Player

Virtools Dev is a real-time engine: it allows any behavior to react constantly
and consistently to its environment, including the User.

When a composition plays, Virtools Dev repeatedly performs the Process
Loop - always performing the same steps in the same order until a composi-
tion is stopped or reset.
22-1 The Virtools Dev Process Loop

As shown in 22-1, there are two parts to the process loop:
1. Processing Behaviors, and

1 Frame 1 Frame And
so on…Process

Behaviors
Rendering Process

Behaviors
Rendering
97

4

98

Understanding Virtools Dev
2. Rendering the Scene.

The duration of one process loop is commonly called a Frame. The frame rate
is the number of times the process loop is performed each second and is mea-
sured in Frames Per Second (FPS). The frame rate is constantly displayed in
the Virtools Dev interface, adjacent to the Play/Pause button at the bottom
right corner of the screen.
22-2 The bottom right corner of the Virtools Dev interface. The FPS display is just to the
right of the Profiler.

The process loop should execute as quickly as possible:
• A high frame rate provides rapid response to the User’s input, increas-

ing the user’s perception of the quality of the composition.
• Rendering the image as often as possible increases the perceived qual-

ity of animations and visual effects. Note that rendering the image
faster than the refresh rate of the display does not enhance the quality
of the visuals and may, in some cases, actually degrade the quality of
the visuals.

To maximize the frame rate, you must minimize the amount of behavior pro-
cessing performed in each frame. Never try to do more in a given frame than
the minimum necessary to maintain the immersive experience. When con-
structing scripts, you should try to:

• divide tasks into sub-tasks and only process the minimum number of
sub-tasks per frame.

• structure your scripts such that the frame rate stays relatively constant.
• avoid scenarios where, in response to user input, a large script must be

processed in its entirety in a given frame. The frame rate is likely to
noticeably drop and the user will be reluctant to provide that same
input again.

4The Virtools Dev Process Loop
Some BBs, such as Character Curve Follow (Characters/Movement), are
designed to operate in an incremental manner. Rather than following the des-
ignated Curve from the starting point to the ending point in a single frame,
Character Curve Follow (Characters/Movement) moves the Character along
only a small portion of the Curve in a given frame – spreading the work across
many frames and increasing the quality of the immersive experience.

22.1 Processing Behaviors
Behavioral processing creates the interactivity within your composition.
Behaviors can be applied to almost every element in Virtools. All active behav-
iors are executed during behavioral processing, one after the other, using a
sophisticated prioritizing scheme (see “The Behavioral Engine” on page 101
for further information).

Each behavior, when executed, may activate other behaviors through behavior
links. Behavior links have a link delay and the link delay is measured in Frames
(process loops). The Link Delay can be:

• 0 – propagate the activation within the current frame
• 1 – propagate the activation in the next frame

• n - propagate the activation in the nth frame after the current frame

Various managers help the Behavioral Engine in its work. The managers per-
form their tasks either at the start of behavioral processing or at the end of
behavioral processing (just before rendering).

In general, you do not need to know how or when these managers work, with
one exception: the MessageManager. Messages are sent at the end of behav-
ioral processing and are received in the following frame. Therefore, interac-
tions driven by messages always experience a one frame delay between the
frame in which the message is sent and the frame in which the message is
received.

A complete description of all Virtools managers is available in the Virtools
99

4

100

Understanding Virtools Dev
SDK.

22.2 Rendering
Rendering displays the composition and is performed by a separate render
engine. The engine is chosen by the User and depends on the capabilities of
their graphics card and operating system.

You can choose the render engine (Render Device) for Author and Play
modes while working in Virtools Dev: from the Options menu choose Gen-

eral Preferences and select the 3D Layout - Rendering tab.

Typically, rendering is the most time intensive portion of the process loop and
is highly dependent on the capabilities of the underlying hardware.

4The Behavioral Engine
23 THE BEHAVIORAL ENGINE
The Behavioral Engine implements behavioral processing and is the central
component of Virtools technologies. Also known as CK2 (hence the CK ref-
erences you often see in the interface, such as CKID, CKClass, etc.), the
Behavioral Engine is what makes Virtools technologies so flexible.

What does CK2 do? CK2 executes your compositions, processing scenes and
managing all interactions between the User and the elements of your composi-
tion. CK2 also processes the elements of your composition that have behav-
iors applied to them – that is, the Behavioral Objects.

Once all behaviors have been processed for a given frame, CK2 provides the
appropriate information to the rendering engine so that the results of the
interactivity can be displayed to the User.

When a composition is played, a series of tasks is performed, as outlined in 23-

1.
NOTE To properly interpret the following series of tasks (the algorithm) you must take

note of the indentation level of each statement. An indentation indicates a sub-
tlest that must be performed as part of the prior sequence of tasks. For exam-
ple, task 3.1.1 states “For each BB attached to Start that has not yet been
activated, activate the BB with the highest priority”. This means that all sub-
tasks (3.1.1.1, 3.1.1.2 and their subtasks) must be performed to complete task
3.1.1. The “For each” portion of the task description means that this task (and
all subtasks) is performed repeatedly until the required condition – that all BBs
attached to Start have been activated – is met.
101

4

102

Understanding Virtools Dev
23-1 The Behavioral Process Loop (Frame)

NOTE The Level is always active and is the highest priority element in every frame. All
currently inactive elements are ignored in the remaining tasks.

Processing continues in the current frame until all BBs are processed or the
link delay is greater than 0. When all behavioral processing is complete, CK2
provides the required information to the rendering engine to draw an image

1. For each active element within a Level, sort the elements in priority
order to establish the element processing order.
2. For each element, the scripts applied to that element are sorted in prior-
ity order to establish the script processing order for that element
3. For each element, from the highest priority to the lowest priority, pro-
cess the highest priority element remaining

3.1. For each script attached to the currently processing element,
process the highest priority script remaining

3.1.1.For each BB attached to Start that has not yet been acti-
vated, activate the BB with the highest priority

3.1.1.1 Process the BB, calculating pOuts, activating
any bOuts, and sending any messages
3.1.1.2 For each bOut that activates a behavior link

3.1.1.2.1. If the behavior link has a delay of 0
then activate and process the next BB. Continue
in this manner until all BBs in this part of the
Script are processed or the behavior link has a
delay greater than 0.
3.1.1.2.2 If the behavior link has a delay greater
than 0 then add the BB to the stack for processing
in the required frame. For example, if the link
delay is 1, then the BB is processed in the next
frame. If the link delay is n, then the script is kept
active and the BB is processed in the nth frame
after the current frame.

4The Behavioral Engine
on screen, the image is rendered, any link delays that are greater than 0 are
reduced by 1, and behavioral processing starts again.

You can watch behavioral processing in action by activating Trace mode in the
Schematic. When the composition is played, the sequence of activations and
BB processing are highlighted in red in the Schematic.

23.1 Behavior Loops
A behavior loop is formed when a series of BBs (and/or BGs) are connected
by behavior links (bLinks) in a manner that causes the BBs to be activated or
triggered in a repetitive fashion.

In other words, a behavior loop is the visual representation of a repetitive
operation. A repetitive operation is also known as an iteration and the pro-
cess of repeating an operation is also known as iterating.

In any implementation of a repetitive operation, a significant concern is to
ensure that there is an acceptable upper limit to the number of times that the
operation repeats. In other words, there needs to be a mechanism to ensure
that an operation is not repeated indefinitely.

Virtools Dev allows the you to define the maximum number of operations
that may be performed in a single Frame via the Max Behavioral Iterations setting
in the Schematic.

NOTE The default value for Max Behavioral Iterations is 8000. The value of Max
Behavioral Iterations is saved with the composition.

Any behavior loop may have a cumulative delay of zero, as long as the loop is
not constantly active and as long as the number of iterations in a frame does
not exceed the value of Max Behavioral Iterations. If the number of iterations
in a frame exceeds the value of Max Behavioral Iterations then the behavioral
engine assumes that an infinite loop has occurred and processing is halted.

For example, Array and Group iterators (Logics/Array and Logics/Groups)
often have a loop delay of 0 so that all elements within the Array or Group are
103

4

104

Understanding Virtools Dev
operated on within a single frame.

However, always keep in mind that (to maintain a consistent frame rate) you
want to divide the processing to be performed into the minimum amount nec-
essary per frame. Therefore, unless absolutely necessary, a behavior loop
should have a cumulative delay of at least one frame. The actual behavior loop
delay can be any positive value in the range of 0 to 32767.

NOTE Looping BBs (such as Timer (Logics/Loops)) that are time-based require a
cumulative loop delay of 1 frame or the BB automatically changes to frame-
based processing.

23.2 Priority
Once CK2 has sorted which elements are active, how does CK2 know which
element to process first? The answer lies with that element's priority: the high-
est priority element is processed first.

You can set the priorities for Behavioral Objects, Scripts and Building Blocks.
The priority of a Behavioral Object and the priority of a Script are set in the
Level Manager. The priority of a BB is set in the Schematic.

If two or more elements have the same priority, then the processing order is
random.
23-2 Priority

With respect to 23-2, note that both Counters (Logics/Loop) and All But

4The Behavioral Engine
One (Logics/Streaming) are all connected to Start with a 0 frame delay. There-
fore, the Behavioral Engine must determine which BB to activate first based
on the priority of each BB.
23-3 Priorities as seen in 23-2

The processing order for the first frame is as follows.
1. All But One (Logics/Streaming) at priority 50: the top bIn (In 0) is

activated by Start then the lower two bOuts (Out 1 and Out 2) are acti-
vated

2. The top Counter (at priority 20): counts 2000 times then activates All

But One (following a path with a 0 frame delay bLink)
3. All But One (at priority 50): the middle bIn (In 1) is activated by Start

then the outer two bOuts (Out 0 and Out 2) are activated
4. The bottom Counter (at priority 0): counts 2000 times then activates

All But One (following a path with a 0 frame delay bLink)
5. All But One (at priority 50): the lowest bIn (In 2) is activated by Start

then the upper two bOuts (Out 0 and Out 1) are activated

At the end of the first frame All But One has been activated three times –
probably not the expected result.

NOTE As a general rule, when multiple BBs can activate the same BB (as in this exam-
ple), the receiving BB should have a lower priority than the BBs that can acti-
vate it to ensure that all prior BBs are processed first.

BB Name Processing Priority
All But One 50

Counter (at top of 23-2) 20
Counter (at bottom of 23-2) 0
105

4

106

Understanding Virtools Dev

4Behaviors and Scripts
24 BEHAVIORS AND SCRIPTS
A Behavior is expressed as a script - the visual representation of a behavior,
applied to an element, as represented in the Schematic.

A script is composed of two parts – a header and a body. The script header
displays the name of the script and the owner of the script. The script body is
composed of the Start and one or more BBs, BGs, paramOps, Parameters,
bLinks, pLinks, comments, etc.
24-1 A Sample Script

24.1 Behavior Building Block (BB)
The fundamental mechanism used to implement behaviors is the BB. BBs are
a visual representation of a software element known as a function, a ready-to-
use solution to a known task.

24.1.1 Interpreting a BB Symbol

BBs come in various rectangular sizes. You can see some different types of
BBs in 24-2.
107

4

108

Understanding Virtools Dev
24-2 Different types of Building Blocks

24.1.2 Behavior Input, bIn

A BB typically has at least one Behavior Input (bIn) – although there are a few
exceptions (BBs that operate in Author mode, e.g. Create Blended Anima-

tion (Characters/Animation)). bIns are always located on the left side of the
BB. A BB starts processing when the BB receives an activation at a bIn.
24-3 Behavior Inputs

24.1.3 Behavior Output, bOut

A BB often has at least one Behavior Output (bOut) – although there are
numerous exceptions. bOuts are always located on the right side of the BB.
bOuts are activated at the end of processing within the current frame. Activa-
tion flow follows any attached Behavior Links.
24-4 Behavior Outputs

24.1.4 Behavior Link, bLink

BBs are connected by Behavior Links (bLink) that define the order in which

4Behaviors and Scripts
BBs are processed. The sequence of BB processing is called the activation flow
whereby activations propagate across bLinks.

Every bLink has a Link Delay that specifies when CK2 should process the BB
at the end of the bLink. The Link Delay can be 0 (meaning that the BB is pro-
cessed in the current frame) or n (meaning that the BB is processed in the nth
frame after the current frame).
24-5 Two bLinks - the left link has a link delay of 0, the link to the right 10

24.1.5 Parameter Input and Parameter Output

BBs typically have Parameters, either in the form of Parameter Inputs (pIns)
above the BB that receive data or Parameter Outputs (pOuts) below the BB
that transmit data, as you can see in 24-6. Parameters are discussed in more
detail in “Parameters” on page 117.
24-6 pIns and pOuts

24.1.6 Target Parameter

A Target Parameter is a special type of pIn used to explicitly identify the ele-
ment affected by the BB.

When a BB is attached to an element, that element becomes the owner of the
Behavior. Typically, a BB attached to an element is implicitly targeted at the
owner of the Script.

For example, Translate (3D Transformations/Basic) normally modifies the
109

4

110

Understanding Virtools Dev
position of its owner.

However, you may want a BB to affect a different element than the owner. In
this case, you must explicitly target the BB at a different element.

Alternatively, you may attach a Behavior to an element of a different type than
the type supported by the Behavior (for example, you can attach a Rotate (3D
Transformations/Basic) behavior to a texture). A Target Parameter is automat-
ically generated (for a targetable BB) by Virtools Dev in the case of an incom-
patible class.

A BB is only targetable if there is a “T” in the targetable column (between the
“Apply to” and “Description” columns) within the Building Blocks window.
24-7 The Targetable column of the Building Blocks window

If a Target Parameter does not already exist on a targetable behavior, a Target
Parameter can be added by selecting “Add Target Parameter” from the context
menu. A new pIn is created as the left-most pIn. A Target Parameter input is
identified by a pair of small squares (rather than the usual single small triangle
for a regular pIn).

4Behaviors and Scripts
24-8 A BB without a Target Parameter then with a Target Parameter

24.1.7 C, S, and V

Some BBs are marked with one or more of the letters C, S or V in the lower
left corner.

C in the in the lower left corner means the BB has a Custom Dialog Box used
to configure complex parameters (e.g. Animation Synchronizer (Characters/
Animation)).
24-9 Animation Synchronizer Custom Dialog Box

S in the lower left corner means the BB has Settings. Settings typically control
which parameters are processed by the BB or how the parameters are processed
111

4

112

Understanding Virtools Dev
by the BB.
24-10 After editing Settings, only 3 bOuts are now calculated

For example, Mouse Waiter (Controllers/Mouse) normally calculates 8 bOuts
(see 24-10). You may only require 3 of these bOuts so you can edit the Settings
to calculate only the 3 bOuts you require, thus saving valuable processing time.

Or, you may require a BB such as Linear Progression (Logics/Loops) to be
frame based rather than time based. You can choose frame based processing
via the BB’s Settings.
24-11 Linear Progression Settings dialog box

V in the lower left corner of the BB means that the BB has a variable configu-
ration. That is, you can do one or more of the following:

• add bIns
• add bOuts
• add pIns
• add pOut
• change some or all of the types of the pIns and/or pOuts

Check the individual documentation for a BB in the Online Reference to
determine exactly what can be changed.

4Behaviors and Scripts
24-12 Parameter Selector, a Variable BB

24.1.8 Messages

A BB may have message icons, meaning that the BB sends or receives mes-
sages. Typically, messages are used to signal a change in state, to request that
some task be performed, and to signal that some task has completed.

NOTE There is a one frame delay between sending and receiving a message. See “The
Virtools Dev Process Loop” on page 97 for more information.

24-13 A BB that sends messages

24-14 A BB that receives messages

24.1.9 BB Processing

There are three kinds of BB that are processed at run-time, that is, in Play
mode.

1. Single Action: the BB completes processing within the current frame.
A Single Action BB can stand alone or be part of a behavior loop.
Example: Set Fog (World Environments/Global).
113

4

114

Understanding Virtools Dev
2. Internally Looped: the BB is turned On and the BB is activated every
frame until the BB is turned Off. Example: Keyboard Controller
(Controllers/Keyboard).

3. Externally Looped: the BB completes one step in the BB’s process
loop within the current frame. If the Author wants the BB to operate
in the typical manner, an external activation feedback loop is required.
Example: Bezier Progression (Logics/Loops).

NOTE An externally looped BB does not require that an external activation feedback
loop be present. It is possible to construct a Script in a manner such that the
external activation feedback loop is not required.

There are also a few BBs that are not activated at run-time, but when they are
attached to an element. An example of such a BB is Create Nodal Path (3D
Transformations/Nodal Path).
24-15 A BB activated when attached

NOTE You should always check the individual Help page from the Online Reference to
see precisely how a BB works.

24.2 Behavior Graph (BG)
A Behavior Graph is an author-defined behavior composed of one or more of
BBs, Parameter Operations, etc. At first glance, a BG can look almost exactly
like a script. However, a BG is distinct from a script because the author of the
BG deliberately encapsulated the behavior. BGs encapsulate a behavior in
such a manner that the BG can be saved and reused.

One of the most powerful features of Virtools Dev is this ability to capture
interactivity in a reusable form. Behavior reuse can lead to amazing productiv-
ity gains!

Virtools Dev treats a BG exactly the same as a BB. A BG can be attached to an

4Behaviors and Scripts
element in the same manner as a BB. A BG can even be considered an Author-
defined BB that, to an Author, works in exactly the same way as a BB – a BG
can have pIns, pOuts, bIns and bOuts. A BG can be considered an advanced
BB constructed to perform a specific task beyond the scope of the BBs pro-
vided in Virtools Dev (e.g. a third person camera for a car racing game).

NOTE Any time the Virtools Dev documentation refers to using a (Behavior) Building
Block or a BB within a composition, the reader can substitute Behavior Graph or
BG.

24-16 A Collapsed Behavior Graph (BG) and the same BG Expanded

If you compare the image of the closed BG with BB images already presented
above, you will notice the differences in the font and border weight used that
help to distinguish between a BG and BB.
115

4

116

Understanding Virtools Dev

4Parameters
25 PARAMETERS
A parameter consists of a name (pName), a type (pType), and a value (pValue).
Parameters are the Virtools Dev equivalent of variables in traditional program-
ming.

Parameters are used to transfer data across Parameter Links (pLinks):
• between behaviors - from Parameter Outputs (pOuts) to Parameter

Inputs (pIns)
• between Parameter Operations (paramOps)
• between paramOps and pIns
• between paramOps and Local Parameters

Parameters can also be used to assign values to an element’s Attributes.

25.1 Parameter Types
The type of a parameter defines the kind of data that a parameter can properly
hold.

Parameters can be broadly grouped as:
1. References or Pointers

The parameter identifies an object instantiated from the CKClass hier-
archy (e.g. a 3D Entity, an Animation, a Script, etc.).

2. Values
The parameter contains a data value (e.g. a Color, a Keyboard Key, an
Integer, etc.).

3. Enumerations
The parameter’s value is constrained to a range of predefined values
(e.g. the Operators supported by Mini Calculator (Logics/Calculator)
are constrained to +, -, /, *).
117

4

118

Understanding Virtools Dev
4. Special
The parameter does not fit in the prior categories. There are only three
such parameter types, Reflected Object, Obstacle and Floor.

For a more detailed description of parameter types, see the SDK documenta-
tion.

25.2 Parameter Input, pIn
pIns are the arguments for Behaviors and paramOps – the values that control
how they work. pIns are represented by the small triangles on top of a BB, a
BG, or a paramOp as shown in 25-1. A pIn has a source for its pValue, typi-
cally a Local Parameter. pIns do not store their value between activations.
25-1 pIns for a BB and for a paramOp

25.3 Parameter Output, pOut
When Behaviors or paramOps have finished their processing, they typically
produce pOuts. pOuts are represented by the little triangles on the bottom of a
BB, BG, or a paramOp. pOuts can have one or more destinations (via pLinks)
that are updated as soon as the value of the parameter has changed (the pValue
is pushed toward the destination(s)). pOuts store their value between activa-
tions.
25-2 pOuts for a BB and for a paramOp

4Parameters
25.4 Parameter Link, pLink
A Parameter Link is a link that propagates a pValue from a pOut or a Local
Parameter to a pIn. Unlike Behavior Links, there is no link delay for Parameter
Links. Parameter Links are represented in the Schematic by dashed lines.

25.5 Local Parameter
A Local Parameter is a parameter represented by a small rectangle – usually
located above a pIn. Local Parameters are data buffers that store values until
their value is requested across a parameter link. Local Parameters are normally,
but not always, linked to pIns by a pLink.
25-3 Local Parameter attached by Parameter Link to BB

NOTE Two unique Local Parameters are allowed to have the same name. However, this
practice is not recommended due to the potential for confusion. For instance,
when you copy and paste a Local Parameter, you copy the Parameter’s name,
the Parameter’s type and the Parameter’s value to a new local Parameter: these
two Parameters are different, even though they have the same name (due to
the copy and paste operation). You are encouraged to use unique names for
each Parameter that you create.

25.6 This
This is a special local parameter that refers to the owner of the script. When
you create a This parameter in a script (via the context menu, see Schematic/
Script Body/This Parameter in the Online Reference for further information),
it automatically sets its value to the identity of the owner of the script.
119

4

120

Understanding Virtools Dev
25.7 Parameter Shortcuts
Parameter shortcuts are used to:

• simplify your scripts by reducing the number of pLinks
• share parameters across script boundaries

Parameter shortcuts are represented by arrow icons, as shown in 25-4.

Parameter shortcuts are created by copying a pOut (via the context menu)
then performing a Paste as Shortcut (via the context menu).

Copying and pasting a shortcut creates a second shortcut that has the same
source as the initial shortcut. Thus, all copied shortcuts point to the same
source and have the same name (pName), type (pType), value (pValue) and
identifier (CK_ID) at all times.
25-4 A Parameter Shortcut Source and Destination symbol

4Parameter Operations (paramOps)
26 PARAMETER OPERATIONS
(PARAMOPS)
Parameter Operations (paramOps) are simple operations performed on a sin-
gle parameter or performed between a pair of parameters. A paramOp is rep-
resented in the Schematic as a standard sized block with a name, two pIns and
one pOut (see 26-1).
26-1 3 different paramOps

There are three types of paramOp:
1. Data retrieval

Retrieves information from the Behavioral Engine (e.g. the mouse
position)

2. Mathematical operation
(e.g. multiplication, sine, etc.)

3. Type conversion
Converts one type of parameter into another type so that the data is in
the desired form. For example, a floating point value can be converted
to a text string for presentation in 3D Layout.

paramOps can be just as useful as BBs when creating scripts in Schematic.
Certain operations, particularly some forms of data retrieval, can only be done
by performing a paramOp.

NOTE Type conversion can be in the form of a Parameter Operation Link - the default
paramOp icon is not displayed, the Parameter Operation Link is drawn in a dif-
ferent color than standard pLinks, and the word Convert or another conversion
type is displayed along the link.
121

4

122

Understanding Virtools Dev
26.1 Parameter Notation
Virtools Dev uses the following notation to describe paramOps in written
form.

For binary operations (operations with two pIns), the syntax is
Result or Output Operation Type Input1 Input2

where Input1 is the left pIn and Input2 is the right pIn.

For unary operations (operations with one pIn), the syntax is
Result or Output Operation Type Input1

where Input1 can be left pIn or the right pIn.

In all cases, the syntax is strictly defined as
<pType> paramOp <pType> <pType>

For example:
<Vector> Multiply <Float> <Vector>

represents a Multiply Operation that produces an output result of pType
<Vector>, using inputs of pType <Float> and pType <Vector>.

Values can also be associated with the pIns and pOut.
<Float=50.0> Multiply <Float=10.0> <Int=5>

paramOps can be used:
• to perform binary operations

C=A*B
V3 = Angle(V1, V2)
V2=f*V1

• to perform unary operations
C=sin(A)

4Parameter Operations (paramOps)
C= ABS(A) - get the absolute value of A
• to convert one type of parameter to another

<Float> Convert <Integer>
<String> Convert <Basic Object>
<3D Entity> Dynamic Cast <Character>

NOTE Dynamic Cast was implemented to allow any meaningful transformation
between pTypes that has not been explicitly implemented already as a distinct
paramOp. Dynamic Cast is typically used when iterating over the members of a
group of diverse elements that must all be treated as if the group members are
all of the same pType.

• to retrieve information about an object
<Float> Get Radius <3D Object>
<Float> Magnitude <Vector>
<Vector> Get Position <3D Entity> <3D Entity>
<CharacterBodyPart> Get BodyPart <Character> <String>

26.2 paramOps and Behaviors
paramOps are not activated in the same manner as BBs. paramOps do not
have a bLink structure that supports activation. Instead, paramOps are only
calculated when needed - when a BB or another paramOp requests the result
of a paramOp.

If the value of a paramOp’s pOut is requested:
1. the paramOp is triggered
2. the value of the pOut is calculated and updated
3. the value of the pOut is returned to the requesting pIn and pushed

toward any other destinations that may exist for that pOut

paramOps also differ from BBs as follows:
123

4

124

Understanding Virtools Dev
• paramOps do not have any settings.
• paramOps may be created in any script attached to any type of object,

the restrictions imposed on BBs that they may only be attached to
objects of a certain CKClass do not apply.

However, paramOps can be directly synchronized with the activation flow by
using Op or Identity (both in Logics/Calculator). See “Calculating a Value at a
Specific Moment” on page 124.

26.3 Advanced paramOps

26.3.1 Order of pIns

The relevance of the order of inputs follows normal mathematical conven-
tions; that is

<Float=50.0> Multiply <Float=10.0> <Int=5>

is equivalent to
<Float=50.0> Multiply <Int=5> <Float=10.0>

but
<Float=2.0> Divide <Float=10.0> <Float=5.0>

is not equivalent to
<Float=0.5> Divide <Float=5.0> <Float=10.0>

26.3.2 Calculating a Value at a Specific Moment

If you wish to calculate a paramOp at a specific moment in a script, you can
use

• Identity to request the pOut and thus trigger the paramOp to per-
form the operation with the current pIns

4Parameter Operations (paramOps)
• Op to perform the requested paramOp when activated by another BB
(after selecting the Operation Type in the Settings for the BB)

Because Identity supports a variable number of pIns, Identity can be used to
calculate several values at the same time.

26.3.3 pTypes <Angle>, <Float>, and <Percentage>

A paramOp will often involve a <Percentage> or <Angle> pType. These
pTypes are actually considered to be of type <Float> by Virtools Dev but with
unique representations:

• an <Angle> is represented as the number of turns and degrees
• a <Percentage> is represented as a value in the range 0% to 100%

Therefore, if a pIn of pType <Angle> has a value of 0:180 (0 turns, 180
degrees) then the value used for calculations is actually equal to 3.14159… (PI)
because Virtools Dev must use radians rather than degrees when performing
calculations.

NOTE There are 2*PI radians in 360 degrees.

Similarly, a <Percentage> of 50% has a value of 0.5 for calculations.

Therefore, wherever the you have a <Float> pIn or pOut, you can change the
pType to <Angle> or <Percentage> for your convenience.

For example, if you create a paramOp
<Float> Multiply <Percentage> <Float>

with the values
<Float> Multiply <Percentage=50%> <Float=2.0>

the result will be 1.0 not 100%. For such an operation, it might be better to
specify the pType of the pOut as <Percentage> for ease of comprehension.
125

4

126

Understanding Virtools Dev

4Attributes
27 ATTRIBUTES
Attributes are a means of adding information to elements. Attributes are a
kind of parameter that belongs to an element instead of belonging to a script.

Virtools Dev includes numerous predefined attributes. You can also define
your own attributes.

Only Behavioral Objects can have attributes. A Level is a BeObject and can
have attributes. Level attributes are, effectively, global attributes.

An attribute has a Name and may also have a Category. An attribute typically
consists of one or more parameters that you can edit. However, some
attributes (such as ZBuffer Only) can not be edited.

For example, an element with the Floor attribute is identified to the Behavioral
Engine as an element that should be treated as a floor so that characters walk
on the element and not through the element.

Attributes are added to elements during Author mode via the Level Manager
context menu, via an element’s Setup, or via the Attributes Manager.

The Attributes Manager (27-1) allows you to inspect and manage which ele-
ments have what attributes.
27-1 The Attributes Manager

At run-time, Attributes can be:
• added via Set Attribute
127

4

128

Understanding Virtools Dev
• removed via Remove Attribute

• retrieved via Has Attribute, if the attribute exists on the element

All attribute BBs are in Logics/Attribute.

27.1 Attribute Shortcuts
Attributes are often used to store data values associated with an element. Typi-
cal uses for attributes include a player's score, a player's health, the characteris-
tics of an object, etc.

If the value of an attribute is required by a script, then Has Attribute (Logics/
Attributes) can be used to retrieve the value of the attribute. Alternatively, an
attribute shortcut can also be used.

Attribute shortcuts are created by copying an attribute from the element's
Attribute Setup (via the context menu) then performing a Paste as Shortcut
operation (via the context menu) at the desired location in the Schematic.

5

PART 5 - AUTHORING IN
VIRTOOLS DEV

This is the part that everybody asks about - where can I find tutorials for Vir-
tools Dev? This part contains two tutorials: a Quick Start for those of you just
starting out in Virtools Dev, and a fun and informative tutorial on particles for
those of you who have already some experience with Virtools Dev.

For the Quick Start, we would prefer you to peruse (and even read) the other
parts beforehand. But if you are too impatient, we have taken care to make the
Quick Start accessible to everyone and we sincerely hope we don’t lose anyone
on the way. Just make sure you read the other parts after!

The particles tutorial is just a sample of what is to come. Further tutorials will
be posted to the Virtools website on a regular basis and you can even find
some previews in the Virtools MiniSite.

The Virtools MiniSite is installed in the Documentation folder. However, if
you chose not install this component, you will have to launch the installation
program once more, and choose to install the MiniSite only.

Part 5 contains:
• 28 Quick Start - a detailed walkthrough for creating your first com-

position
• 29 Particles - an introduction to the world of Virtools Dev particle

systems
129

5

130

Authoring in Virtools Dev

5Quick Start
28 QUICK START

28.1 Overview
The Quick Start tutorial is your introduction to the power and simplicity of
Virtools Dev.

The Quick Start tutorial is structured very much like a real project in Virtools
Dev. You will follow these steps:

1. organize resources
2. plan the content to be implemented - what do you want the composi-

tion (CMO) to do?
3. import the media; the models and characters that form and inhabit the

world
4. arrange the scene
5. implement interactivity within the scene
6. test the scene
7. refine the scene based on the results of your tests
8. go back to (6) and continue to test and refine until you are satisfied

that the scene meets the requirements you chose in (2)
9. release the composition

NOTE In actual production, you would plan the content before organizing the
resources. However this is a Quick Start tutorial, so things are done a bit differ-
ently!

28.2 Organize Resources
This tutorial uses models contained in the data resource VirtoolsResources.
VirtoolsResources are normally installed by default. However, if you chose
not to install this component, you will have to launch the installation program
131

5

132

Authoring in Virtools Dev
once more, and choose to install the Data Resources only.

To use the supplied models, VirtoolsResources must be open. VirtoolsRe-

sources are open if there is a tab labeled VirtoolsResources visible on the tab
strip in the top-right region of the screen, next to Building Blocks. If the Vir-

toolsResources Data Resources are not open, perform the following steps:
1. from the Resources menu, select Open Data Resource

2. in the Virtools Dev program folder, open the Documentation folder,
select VirtoolsResources.rsc and click Open.
The VirtoolsResources tab will appear next to the Building Blocks tab,
in the top-right region of the screen.

28.3 Plan the Content
Normally, planning the content is your responsibility. For the purposes of this
tutorial, we have planned the content for you.

Using the models provided, create a world that can be explored by a player character con-
trolled by the user. Provide multiple cameras (for different viewpoints) and support for colli-
sion detection between the character and the world.

28.4 Import Media
Once you have a clear plan, the next step is to import the scenery and actors
into your world.

28.4.1 Importing the Scenery

Virtools Dev is an authoring platform, used to integrate media and add inter-
activity. The media can be of many forms: 3D object models, 3D character
models with their animations, sounds, etc. In general, the media is created in
some other application and then saved to or exported to a Virtools Dev read-
able format.

5Quick Start
Normally, all your media are stored and organized in a data resource. A data
resource is structured as a set of nested folders and files, just like the file sys-
tem on the computer. When a data resource tab is selected, the window is
divided in two sections. On the left hand side of the window is the directory
structure for the data resource. On the right hand side of the window is a list-
ing of the contents of the current folder.

Whenever you are instructed to select a file from VirtoolsResources, the loca-
tion of the file is given in brackets. For example, in step 1 below you are
instructed to select the file Apartment.nmo (3D Entities/Worlds). This means
you should open the folder 3D Entities, then the sub-folder Worlds where you
will find Apartment.nmo.
1. From VirtoolsResources, select Apartment.nmo (3D Entities/Worlds)

and drag it into 3D Layout to add the contents of the file to your scene.
The file Apartment.nmo contains a scene created in a popular 3D modeling
application and exported to Virtools Dev, as shown in 28-1 below. The
scene contains a number of textured objects (such as walls, chairs, a TV,
etc.) and three cameras. The scene does not use any lights; instead object
materials were self illuminated. Self-illumination is a good technique to use
to avoid CPU intensive real-time lighting.

28-1 The file Apartment.nmo, as seen in the 3D Layout
133

5

134

Authoring in Virtools Dev
28.4.2 Exploring the Scene in Author Mode
2. In Level View select KitchenTable (Global/3D Objects). Select Orbit Tar-

get to move around your scene while keeping Kitchen Table in the center
of the view.

3. Use Camera Dolly to move the camera closer to and farther from the
scene. Use Camera Pan to move up and down, and left and right.

4. When you are finished exploring, right-click in 3D Layout and choose
Reset Current Camera Settings to return to the view you had before you
started exploring.

28.4.3 Adding a Character and Animations
5. From VirtoolsResources select Eva.nmo (Characters/SkinCharacters) and

drag it into 3D Layout.
A female character, Eva, is added to the scene and the Character Setup
opens. This character was created separately from the scenery.

6. Click the cross in the upper right corner of the Character Setup to close
it, then use Camera Dolly to move forward so you can see the character
better.

At the moment the character is not very visible, for there is no light in the
scene. You can either add a light to the scene, or you can change the properties
of the character to make it more visible.

You will modify the Emissive parameter value of the character’s material to
make the character more visible.
7. Right-click the character in 3D Layout and choose Material Setup

(Eva_Material).
Material Setup opens in the lower half of the screen.

8. In Material Setup, click the color box next to Emissive. In Color Box,
enter values of 255 for R, G, B and L as shown in 28-2 and then click OK to
close it.

5Quick Start
28-2 The Color dialog box

The character is now visible because you have adjusted the characteristics
of the character’s material so that it looks as if the material emits light. In
other words, the character is self-illuminated.

9. Click the cross in the upper right corner of Material Setup to close the

Setup.
10. In VirtoolsResources, hold the CTRL key down and click Run.nmo,

Walk.nmo, Wait.nmo and WalkBackward.nmo (Characters/Animations/
SkinCharacterAnimations/Eva) to select the four files. Drag these anima-
tion files onto the character. Release the mouse button only when you see
a yellow bounding box (indicating that the character is selected) appear
around the character.
Each of these animations (Run.nmo, Walk.nmo, Wait.nmo and WalkBack-

ward.nmo) were exported one at a time and separately from the character
that you imported earlier in this tutorial.

28.5 Arrange the Scene
The next step is to arrange the scene, presenting the scene in the manner that
you desire. Typically, this means creating and controlling lighting, creating a
camera and setting the view point for the camera but can also include adding
135

5

136

Authoring in Virtools Dev
or creating objects.

This scene does not need any lighting for all elements in the scene are self illu-
minated.

Three cameras were exported, with the scene, from the 3D modeling applica-
tion (these cameras are used later in this tutorial). However, for the purposes
of this tutorial, you will add another camera to the scene and set the view point
for the camera.

28.5.1 Adding a Camera

When authoring, Virtools Dev provides five default camera views (Perspec-
tive, Top, Front, Right, and Orthographic). However, the five default camera
views will not be available when using a player such as the Virtools Web Player.
Therefore you will always need to create a camera through which to view the
scene if a camera is not already present.
11. Click Create Camera.

A targeting camera is created and Camera Setup appears in the lower half
of the screen.

12. In 3D Layout, click Camera Dolly and move the mouse toward the top of
the screen so that the camera, and therefore your viewpoint, approaches
the character, as shown below in 28-3.

28-3 The view after using Camera Dolly

5Quick Start
13. Next, right-click in 3D Layout and in the menu that appears choose
Select Camera then Perspective View. Then select Camera Dolly and
move your mouse slightly toward you until you see a white box, as in 28-4.
The white box you can see is the camera. The white lines represent the
camera’s view frustum. The yellow line links the camera to the camera tar-
get.

28-4 The Camera you just created, represented by a white box

28.5.2 Activating the Camera at the Start of the Scene

It is important to activate a particular camera at the start of a scene so that you
can be sure that the user sees exactly what you want them to see.
14. From Building Blocks, select Set As Active Camera (Cameras/Montage)

and drag it onto the camera you just created in the 3D Layout. Release the
mouse button only when you see a yellow bounding box surrounding the
camera.

15. Click Schematic.
You will see that a script has been created for the camera, as shown in 28-

5. By applying a building block (BB) to an element in 3D Layout, you have
just created your first script!
137

5

138

Authoring in Virtools Dev
28-5 The script created by attaching Set As Active Camera to the camera.

28.5.3 Targeting the Camera

At the moment the camera is fixed in position and orientation - if the character
moves out of the camera’s view frustum, you will no longer be able to follow
the character. You will use a BB to make the camera always target the charac-
ter, changing the orientation of the camera as necessary to keep the character
centered in the camera’s Field of View (FOV).

NOTE The camera you created is a targeting camera, meaning the camera always
looks towards its target. However, the use of a target is no longer recommended
and is only present for backward compatibility. But don’t worry, you are about to
learn a better way to make a camera always look at a certain object!

16. From Building Blocks, drag Look At (3D Transformations/Constraint)
onto your camera in 3D Layout, letting go when you see a yellow bound-
ing box surrounding the camera. In the dialog box that appears, select Eva
as Referential as shown in 28-6, and click OK to close.

28-6 The Edit Parameters dialog box for Look At

17. Look in Schematic.
Look At has been added to the script you created earlier when you
attached Set As Active Camera to your new camera. Set As Active Cam-

era only needs to be activated once, whereas Look At needs to be activated
every frame to always point at the character.

5Quick Start
18. Click Link, then click the Behavior Output (bOut), the pin on the right of
Look At, and then the Behavior Input (bIn), the pin on the left of Look At.
A behavior loop is created, as shown in 28-7.

28-7 Look At is now linked and looped

19. Right-click the behavior loop and choose Edit Link Delay. Make sure the
value for Link delay is 1, as shown in 28-8.

28-8 The Edit Link Delay dialog box

The camera you created will now look at the character every frame, adjusting
its orientation if needed to always keep the character centered in the FOV.

28.6 Add Interactivity
So far you have set the scene and selected the camera to activate, but you are
still missing the essential part - interactivity.

For the moment, interactivity in this tutorial will simply consist of making the
character walk or run under the control of the keyboard.

28.6.1 Controlling the Character

Although you have already attached four animations to the character, you have
not yet implemented a mechanism for causing a given animation to be exe-
cuted in response to user input.
139

5

140

Authoring in Virtools Dev
The simplest way to control a character is using Character Controller (Char-
acters/Movement). Character Controller executes animations in response to
messages.
20. From Building Blocks, drag Character Controller (Characters/Move-

ment) onto the character. Release the mouse button when you see a yellow
bounding box surrounding the character.

21. In the Edit Parameters dialog box that appears, select the following
parameters, as shown in 28-9: NW_wait for Stand Animation, NW_walk
for Walk Animation, NW_WalkBackward for Backward Walk Animation
and NW_run for Run Animation.

28-9 The Edit Parameters dialog box for Character Controller

28.6.2 Adding Keyboard Support

The character will now perform certain animations when receiving certain
messages. You must now add a way of transmitting the required messages to
the character in response to user input from the keyboard.

The following step illustrates one means for sending the desired messages in
response to keyboard input.
22. From Building Blocks, drag Keyboard Controller (Controllers/Key-

board) onto the character, releasing the mouse button when you see a yel-
low bounding box surrounding the character.
Keyboard Controller is automatically configured so you do not need to
do anything further.

You can now control the character via the arrow keys on the numpad. Key-

5Quick Start
board Controller translates the arrow keys that you press into messages.
Character Controller receives each message and executes the animation cor-
responding to that message. Holding the INSERT key while moving the char-
acter enables the Run Animation.

28.7 Test
Now that you have a simple scene with some interactivity, the next step is to
test it out.

NOTE Implement, test and refine, implement, test and refine, implement, test and
refine! The "implement, test and refine" cycle allows you to rapidly develop new
compositions a piece at a time. By checking your work often, you can never go
too wrong!

NOTE Don't forget to regularly save your work. Virtools strongly recommends the fol-
lowing incremental save technique. When starting a new project, immediately
name your composition and append a version number to the end of the file
name (e.g. MyComposition00.cmo) then save the composition. Every time you
achieve a short term goal in the development cycle, save the composition to a
new version number (e.g. MyComposition01.cmo, MyComposition02.cmo, etc.).
The multiple versions of the composition provide a complete development his-
tory and a ready source of backups in case you change your mind about a
design decision or disaster strikes your working version of the composition.

28.7.1 Switching to Play Mode
23. Click Play in the bottom right corner of the Virtools Dev interface. Use

the number pad arrow keys to move the character around. Remember to
hold down the INSERT key while moving to make the character run.

28.7.2 Returning to Author Mode
24. Click Pause in the bottom right corner of the Virtools Dev interface.

NOTE Play and Pause are actually the same button, changing state as necessary.
141

5

142

Authoring in Virtools Dev
28.8 Refine
The next step is to improve the scene. At the moment the character walks
above the floor and is able to walk straight through supposedly solid objects,
such as the desk, chairs, walls, etc.

28.8.1 Making the Character Stay on the Floor

There are several BBs that will cause a character to remain on the floor. In this
tutorial you will use the simplest BB of this type: Character Keep On Floor.

For Character Keep On Floor to work, the behavioral engine must know that
an element is to be treated as a floor.
25. From Building Blocks, drag Character Keep On Floor (Characters/Con-

straint) onto the character, releasing the mouse button when you see a yel-
low bounding box surrounding the character.

26. Click Schematic, and you will find a script containing the three building
blocks (Character Controller, Keyboard Controller and Character Keep

on Floor) you dragged onto the character.
Character Keep On Floor needs to be activated regularly so that the char-
acter always remains on the floor. In other words, it needs to be looped for
it to work properly.

NOTE You have already created a loop for Look At in your camera script.

27. Click Link, then click the Behavior Output (bOut), the pin on the right of
Character Keep On Floor, and then the Behavior Input (bIn), the pin on
the left of Character Keep On Floor.

28. A behavior loop is created, as shown in 28-10. Right-click the behavior
loop and choose Edit Link Delay. Make sure the value for Link delay is 1

5Quick Start
28-10 Keep the character on the floor

29. Next, right-click the floor in 3D Layout and choose 3D Object Setup

(Room_Sun). In the 3D Object Setup that opens, click Attribute on the
left side of the window to switch to attribute mode.

30. Click Add Attribute, and in the dialog box select Floor (Floor Manager), as
shown in 28-11.

28-11 The Add Attribute dialog box

31. Click Add Selected, then Close.
You can see that the attribute Floor has been added to this object, as it now
appears in the attribute list, as shown in 28-12. Finally, close 3D Entity

Setup.
143

5

144

Authoring in Virtools Dev
28-12 The Floor Attribute has been added successfully

32. Click Reset IC, then Play.
The character now recognizes the floor.

28.8.2 Adding Simple Collision Management

There are also various ways to implement collision detection in Virtools Dev.
In this tutorial, you will use Object Slider (Collisions/3D Entity). Object

Slider makes the character slide on any objects it comes into contact with - as
compared to abruptly stopping the character on contact.
33. From Building Blocks, drag Object Slider (Collisions/3D Entity) onto

the character, letting go when you see a yellow bounding box surrounding
it. Accept the default parameters and click OK to close the dialog box.

34. Click Reset IC, then Play.
The character still walks through objects. Why?

28.8.3 Declaring Objects as Obstacles

Although the character now has a BB preventing it from colliding with objects,
the character still walks through chairs, the table and other objects - even walls.

Again, just as with floor management, Object Slider requires that you identify
the elements of your composition that are to be treated as obstacles. However,
for Object Slider you do not use attributes but instead place your obstacles
into a Group.
35. In Level View, click 3D Objects (Global) to open the folder, then right-

click 3D Objects and choose Select Children.
You have just selected all objects in the scene. If you look at 3D Layout,
bounding boxes are around all objects in the scene.

5Quick Start
36. Right-click the selection, and choose Place Selected in New Group.
A new group is created that references all 3D Objects in the scene.

37. Rename this group from New Group to Obstacles.
NOTE You can rename any element in the Level Manager by right-clicking the element

and choosing Rename. All references to the renamed element, throughout your
composition, are automatically updated to reflect the new name.

38. In Schematic, right-click Object Slider and choose Edit Parameters. In
the dialog box that appears, select Obstacles in the Group pull-down list, as
shown in 28-13.
Object Slider will now prevent the character from walking through the
objects you referenced in the group Obstacles.

28-13 Object Slider Edit Parameters dialog box

28.9 Test Again
Before you go on, you should test whether the collision detection system you
have implemented works as you intended.

28.9.1 Switching to Play Mode
39. Click Reset IC and then Play. Use the number pad arrow keys to move the

character around, holding down the INSERT key to make the character
run. Try to make the character walk through the objects - and walls - of the
scene.

28.9.2 Returning to Author Mode
40. Click Pause to return to Author mode.
145

5

146

Authoring in Virtools Dev
28.10 Refine Again
The character no longer walks through supposedly solid objects, but there are
still a number of improvements that can be made. For example, three cameras
were exported with the scene but none are currently used. You will now create
a script that enables you to switch between cameras during play.

28.10.1 Dynamically Switching Cameras

The next step is to add keyboard control over the cameras in the scene.
41. In Schematic, ensure that you can see the script New Camera.0004 Script.

From Building Blocks drag the following BBs into the script (as shown in
28-14): Switch On Key (Controllers/Keyboard), Parameter Selector
(Logics/Streaming) and Set As Active Camera (Cameras/Montage).

28-14 Switching cameras script - in progress

42. Right-click Switch On Key and choose Construct -> Add Behavior Out-

put. Repeat this operation so that you have a total of four bOuts (one
bOut for each camera). Right-click Switch on Key and choose Edit

Parameters. Configure the pIns as follows (shown in 28-15): X for Key 0,
C for Key 1, V for Key 2, B for Key 4.

28-15 Edit Parameter for Switch on Key

5Quick Start
43. Right-click Parameter Selector and choose Contruct -> Add Behavior

Input. Repeat this operation so that you have a total of four bIns. Right-
click the parameter output (the pOut, just under the V in the lower left
hand corner) of Parameter Selector, and choose Edit Parameter. In the
Edit Parameter dialog box, change Parameter Type from Float to Cam-

era (as shown below in 28-16), then click OK.
28-16 Changing the parameter types (pType) for Parameter Selector

44. Right-click Parameter Selector and choose Edit Parameters. Configure
as follows (shown in 28-17): Camera01 for pIn 0, Camera02 for pIn 1,
Camera03 for pIn 2, New Camera.0004 for pIn 3.

28-17 Editing the parameters for Parameter Selector

45. Right-click the Set As Active Camera you added a moment ago and
choose Add Target Parameter.

Now all that remains is to add behavior links between these building blocks
(BBs) and a parameter link from a pOut on one BB to a pIn on another BB
(see 28-18).
46. Click Link on the Schematic toolbar then click the bOut and bIn you

want to link.Working from the left, link the bOut of Set As Active Cam-

era to the top bIn of Switch On Key. Next link the bOuts of Switch On
147

5

148

Authoring in Virtools Dev
Key to bIns of Parameter Selector. Link the bOut of Parameter Selec-

tor to bIn of Set As Active Camera.
You have completed all behavior links (bLinks). The last thing that
remains is a parameter link, to pass information from one BB to another.

NOTE You can also use the keyboard shortcut L to activate the Link button.

47. Link the pOut of Parameter Selector to the target parameter of Set As

Active Camera.
Your script should look like 28-18.

28-18 Camera selection script

NOTE Switch on Key only needs to be activated once; Switch on Key remains active
until it is deactivated. For more information on the different types of BB, See
“BB Processing” on page 113

28.11 Test Again
Once again, you must test whether your implementation of camera switching
works as expected. Don't forget to save your composition too, preferably
using the technique presented in “Test” on page 141.

28.11.1 Switching to Play Mode
48. Click Reset IC, then Play. The scene should start off using the camera you

created yourself (New Camera.0004). Use the Z, X, C and V keys to switch
between cameras.

5Quick Start
28.11.2 Returning to Author Mode
49. Click Pause.

28.12 One Last Refinement
There is one last refinement you could make - you could make all cameras look
at the character. This last refinement you can try to do by yourself. Here is a
hint: the simplest way is to attach Look At to each camera. Perhaps there are
other ways - it is up to you to find out!

But don’t worry if you can’t figure it out right away - you will find a completed
version of this tutorial QSComplete.cmo in the Virtools Dev Program folder:
Documentation/Cmos/FinishedCmos.

28.13 Export Content

28.13.1 Saving Your Hard Work

You can save your work in two different formats: CMO or VMO.

CMO is an editable version of your work that you can open in Virtools Dev
and view in players such as the Virtools Web Player.

VMO is a view only file format - VMO files are for players only and cannot be
opened in Virtools Dev.

You should always save you work (a final time - you have been saving intermedi-
ate versions, haven’t you?) in a CMO first.
50. From the File menu, select Save Composition. Choose a name and loca-

tion for your composition.
You will be able to re-open this composition in Virtools Dev and edit it.

Once you have saved your work as a CMO, you may wish to save it as a VMO.
149

5

150

Authoring in Virtools Dev
51. From the File menu, select Export to Virtools Player. Choose a name and
location for your composition.
This file can now only be opened by a Virtools player, such as the Virtools
Web Player.

28.13.2 Sharing Your Content With Others

When you plan to share your composition with others, for example on a web
page, there are two advantages to using the Export to Virtools Player function.

The first advantage is that no one can then look at the details of how you
implemented the interactivity within your composition, or extract your media
from the composition for (potentially) unauthorized re-use.

The second advantage is that the file size is smaller - always a positive factor
for Internet delivery. To view your work:
52. use the Web Player - drag the.cmo file into an Internet Explorer or

Netscape Communicator window.
53. use the Create Web Page command from the file menu to create a web

page, complete with the html tags needed to start the Virtools Web Player.

28.14 If You Encountered Any Difficulties...
You will find two completed versions of this exercise, in the folder: Documen-
tation/Cmos/FinishedCmos:

1. QSComplete.cmo

for use in Virtools Dev
and

2. QSComplete.vmo

to view with the Virtools Web Player

5Quick Start
28.15 Congratulations
You have successfully completed the Quick Start tutorial! In this tutorial, you
have learned how to do a number of things:

• add media, in the form of models, a character and animations to a
scene

• create a camera, target the camera, and activate the camera at the
beginning of a scene

• attach BBs to objects, and add BBs to existing scripts
• edit a BB - both the parameter type (pType) and the parameters them-

selves
• link BBs to other BBs (activation flow) via behavior links
• link parameter outputs (pOuts) of one BB to the parameter inputs

(pIns) of another BB (data flow) via parameter links
• open and close Entity Setups
• add attributes to an element (just a reminder - attributes are parameters

that belong to an element rather than to a script)
• create a group and add elements to that group
• save your file in an editable format
• export your file to a Player only format
151

5

152

Authoring in Virtools Dev

5Particles
29 PARTICLES

29.1 Introduction
In this tutorial you will learn how to generate sophisticated visual effects like
sparks, smoke, snow, fireworks, and clouds of dust using the Virtools Dev par-
ticle systems.

The Virtools Dev particles system can be divided into four distinct parts:
1. emitters
2. particles
3. deflectors
4. interactors

29.2 Emitters
An emitter is a source of particles. Many different emitters are supported
(spherical, disc, point etc) - choose the type of emitter according to the desired
effect. Most emitters can be applied to any 3D Entity (and, therefore, to their
descendent classes also) but are typically applied to 3D frames. However, the
CurveParticleSystem emitter can only be applied to Curves and the Object-

ParticleSystem can only be applied to 3D Objects.

Each type of emitter is identified by a unique icon.
NOTE The particle system BB determines the type of emitter

29-1 Emitters, from left to right: Cubic, Cylinder, Disc, Linear, Planar, Point and Spherical.
153

5

154

Authoring in Virtools Dev
29.3 Particles
Particle systems have many different parameters that control how particles
behave. For example, you can control a particle's lifespan, speed, weight, and
color. The particles themselves can be of different styles: simple points, lines,
textured sprites (animated or still), or 3D objects.
29-2 Particles, from left to right: Point, Line, Sprite, Orientable Sprite, Radial Sprite and
Fast Sprite.

29.4 Deflectors
Deflectors are types of obstacles that modify the path of particles by getting in
their way and ‘bouncing’ them in another direction. There are different types
of deflectors (spherical, cylinder, infinity, plane, etc.) that can be applied to
frames or any 3D object.

Each type of deflector is identified by a unique icon.
29-3 Deflectors, from left to right: Box, Cylinder, Infinite Plane, Plane and Sphere.

29.5 Interactors
Finally, there are interactors (wind, gravity, magnetic fields, and mutation
boxes) that modify the behavior, course or appearance of particles. With the

5Particles
exception of gravity or atmosphere (which can be applied to all types of
objects, including emitters), interactors are applied to 3D frames only.

Each type of interactor is identified by a unique icon.
29-4 Interactors, from left to right: Disruption, Global Wind, Local Wind, Magnet,
Mutation, Tunnel and Vortex.

29.6 Configuring a Particle System
Particle systems can be interactively controlled. For example, you can activate a
particle emitter, alter the orientation of a particle emitter, activate a deflector
or interactor, or even modify the characteristics of the particles while the com-
position is playing.

A particle system is configured via the Edit Parameters dialog box. The Edit

Parameters dialog box, shown in 29-5, is displayed when:
• creating a particle system by dragging a particle system Building Block

(BB) onto a 3D object or 3D frame in 3D Layout
• creating a particle system by dragging a particle system BB onto a 3D

object or 3D frame in Level Manager

• right-clicking a particle system BB in Schematic

Typically, you will only use a small number of the available parameters. The
unused parameters can be hidden via the Edit Settings dialog box (opened by
right-clicking the BB in Schematic), shown in 29-6. Hiding the unused param-
eters via the Edit Settings dialog box removes the hidden parameters from
display and from further processing - thus reducing the CPU load at runtime
and helping to maintain a satisfactory frame rate.
155

5

156

Authoring in Virtools Dev
29-5 The Edit Parameters dialog box for a particle system.

NOTE Particles use a lot of system resources. To maintain a satisfactory frame rate,
keep the number of emitters to a minimum and avoid creating large numbers of
particles from each emitter. The default number of particles is 100. In some
cases you may need to use more, but generally you can obtain a satisfactory
effect by fine-tuning a few of the parameters.

5Particles
29-6 The Edit Settings dialog box for a particle system.

29.7 StartCmos and FinishedCmos
At the start of exercises 1, 2, 3, and 5 you will be instructed to open a file. You
will find these files in the Virtools Dev program folder, in the following loca-
tion: \Documentation\Cmos\StartCmos.

You can find the completed version for all exercises in \Documenta-
tion\Cmos\FinishedCmos.
157

5

158

Authoring in Virtools Dev
29.8 Exercise 1 - Particle System Basics
In this exercise you will learn the basics of creating particle systems.

29.8.1 Start
1. Open the file ParticlesExercise01.cmo.

A small town, in the middle of the night, is displayed as shown in 29-7.
Use the camera navigation tools if you wish to change the viewpoint. The
3D frames necessary for the emitters are already present, as is a curve used
in a later exercise.

29-7 3D Frames ready for particle system BBs

29.8.2 Placing an Emitter
2. In Level Manager, select LampFrame_01 (Global/3D Frames).
3. From Building Blocks, drag SphericalParticleSystem (Particles) onto

LampFrame_01 in Level Manager.
4. The Edit Parameters dialog box for this BB opens - just click OK for now.
5. Click Zoom on Selection.

You can see that the 3D frame now has an orange wire-frame spiral repre-
senting the emitter, as shown in 29-8.

5Particles
29-8 A particle system emitter

NOTE Sometimes it can be easier to drag a BB onto an object in Level Manager than
onto an object in 3D Layout. In this example, the 3D frame is on the inside of
the street light. If you attempted to drag the BB into 3D Layout and onto the
3D frame you would be unsuccessful. Instead of attaching the particle BB to the
3D frame, the BB would try to attach to the street light - and would have gener-
ated an incompatibility error message.

29.8.3 First Few Particles
6. In the lower right part of the screen, click Reset IC, then Play.

You can see particles being emitted.
7. Click Zoom on Selection, then Camera Dolly - slowly moving your

mouse back towards you to bring more of the particle effects into view.
The particles are in the form of small white squares, as shown in 29-9. By
default, these sprites do not have a texture.

29-9 By default, particles are not textured and appear as small white squares
159

5

160

Authoring in Virtools Dev
29.8.4 Changing a Basic Parameter: Adding Color
8. In Schematic, right-click SphericalParticleSystem and choose Edit

Parameters.
NOTE It is not necessary to click Pause each time you want to change a parameter,

opening the Edit Parameters dialog box pauses the composition. On closing
the dialog box, play automatically continues. You only need to click Reset IC if
you add a new particle system or other BB. You do not have to click Reset IC if
you just change some parameters.

9. In the Edit Parameters dialog box, under the parameter InitialColorAn-

dAlpha, click the white box. In the Color dialog box that opens, choose a
bright color. Click OK to close.
The particles are no longer white, they are now the color you just chose.

10. Re-open the Edit Parameters dialog box and choose a different color for
EndingColorAndAlpha.
The particles change from the first color to the second as they move away
from the street light.

11. To allow each of these colors to vary, open the Edit Parameters dialog
box once again and adjust the Variance for each. To see these changes
more easily, alter the particle Lifespan from 1000 ms to 2000 ms.

NOTE Alpha is the name given to transparency, encoded in 8 bit grayscale for 32 bit
color and as a single bit mask for 16 bit color. When Alpha is set to black, parti-
cles are entirely transparent, and when Alpha is set to white, particles are com-
pletely opaque. Use Alpha to create translucent systems, such as smoke.

29.8.5 Texturing Particles
12. From VirtoolsResources, drag the texture Spark.jgp (Textures/Particles)

into 3D Layout.
13. In Schematic, open the Edit Parameters dialog box for SphericalParti-

cleSystem. Choose Spark in the Texture parameter pull-down menu.
14. Click OK, then Play.

5Particles
The particles now have a texture and appear as small flakes. These textures
are static, but you will see later that you can also use animated textures.

NOTE If you have graphics editing or viewing programs installed and associated with
the texture file types, you can edit or view the texture by double-clicking the
texture in the data resource. Virtools Dev automatically opens the file in the
associated graphics program.

29.8.6 Configuring Speed, Lifespan, and Size
15. In Level Manager, repeat the steps above to create identical particle sys-

tems on the 3D frames on the other street lights.

Now you will change parameters, one at a time, so that you can understand the
effects you can achieve with these simple changes.
16. Adjust the parameter Speed for each 3D frame, then click Play.

With a Speed of 0.05 you will see very fast particles, like cannon balls.
With a Speed of 0.0001 you will see something that resembles a halo of
multi-colored magma.

17. Now adjust the parameter Lifespan. Choose values between 10 and 2500
ms.
With Lifespan you can obtain results such as a drone of particles sur-
rounding the emitter, clouds of explosions, swarms of gnats, etc.

18. Finally, adjust the sizes of each particle system, either with Initial Size,
Ending Size or both.
With Initial Size and Ending Size you can obtain astonishing results:
from flows of lava to vibrating halos, as illustrated in the completed ver-
sion of this exercise Particles01Finished.cmo.

NOTE Particles with a high Speed value do not require a long Lifespan. High speed
particles are quickly out of camera range. For optimum performance, a particle's
Lifespan should only be long enough for the particle to exit the camera's view
frustum.
161

5

162

Authoring in Virtools Dev
29.8.7 Variance and Other Parameters

The principles shown above also apply to the other particle system parameters,
such as the parameters that specify the initial size and ending size of particles,
the total number of particles, etc.

All of these parameters also have a Variance (as you may have noted when
changing the particle colors). The Variance defines the range over which a
parameter's value can vary.

For example, if you set a Lifespan of 500 ms with a Variance of 100, the
lifespan of particles can vary between 400 ms and 600 ms. Some of the possi-
ble effects are shown in 29-10.
29-10 The importance of using Variance

29.8.8 Conclusion
In this exercise you learned how to modify the basic parameters of a parti-
cle system: Color, Texture, Speed, Size and Lifespan.

29.9 Exercise 2 - Moving an Emitter and
Adding Interactors
Now that you know the basics of particle systems, you are ready to create
moving particle systems and particle systems that are dynamically modified at
run-time.

5Particles
29.9.1 Creating a Moving Emitter
Emitters, deflectors and interactors can be stationary or moving. First, you
will create a moving emitter.

1. Open the file Particles02.cmo.
All the street lights are now working and there is a pink car (with two 3D
frames attached to it) that is used in this exercise.

2. In the Level Manager, select PinkCar_Frame (Global/3D Frames).
This 3D frame is at the back of the car.

3. From Building Blocks, drag PointParticleSystem (Particles) onto
PinkCar_Frame in Level Manager.

4. In the Edit Parameters dialog box that appears, select Star as the Tex-

ture.
5. To obtain a better visual effect, change Lifespan to 800 ms, Speed to 0.01

ms, and Initial Size to 2 with a Variance of 1. You can also change the
Variance for InitialColorAndAlpha and EndingColorAndAlpha.

6. Click OK, Reset IC, then Play.
The pink car now leaves a trail of (multi-colored) stars after it, as shown in
29-11.

29-11 A moving emitter
163

5

164

Authoring in Virtools Dev
29.9.2 Adjusting Gravity
Gravity is an attribute that modifies the behavior of all particles in the scene.
Gravity is global, therefore you can only have one gravity parameter for the
entire scene.

7. In Level Manager, double-click Floor (Global/3D Objects).
8. In the 3D Object Setup that appears, click Attribute in the left hand col-

umn, then Create Attribute.
9. In the Create Attribute dialog box that appears, select Particle Gravity

(Particle Systems Interactors), click Add Selected, then Close.
You will see that the 3D object Floor now has the attribute Particle Gravity
with a value of -0.0001.

10. Click Reset IC, then Play.
All particles in the scene are now pulled down by the gravity affect. This is
especially true for those particles with a slow Speed.

11. Double-click the parameter value -0.0001. In the Edit Parameters dialog
box that appears, change the value to -0.0002.

12. Click OK, Reset IC, then Play.
Though the change in Gravity seems small, the effect is great on all of the
street lights. Only particles whose Speed is relatively high seem to be
spared the effects of Gravity.

It is best to modify particle system parameters and attributes gradually. For
example, if you set Particle Gravity to -5, you will not see any particles - the
force of Gravity is so powerful that it pulls the particles out of view as soon as
they are created. Conversely, you can enter positive values for Gravity - the par-
ticles will rise instead of falling.

You can also change the Weight for individual particle systems via the Edit

Parameters dialog box. Changing the Weight allows you to differentiate
between particle systems if you have more than one emitter in a scene. For
example, if you enter a negative value for Weight when the value of Particle

5Particles
Gravity is positive then your particles will sink rather than rise. Using Weight

Variance values that cause Weight to have both positive and negative values
allows you to have both falling and rising particles from the same particle sys-
tem.

NOTE Particle Gravity and Particle Atmosphere are the only attributes of the Interactor
type that can be applied to any entity or object in Virtools Dev - including parti-
cle emitters. All other attributes must be applied to 3D frames.

29.9.3 Adding Wind

You may have noticed that the fan found on the right side of town doesn’t
seem to have an effect, even though it is turning. For the fan to affect the par-
ticles, you need to add a Particle Global Wind or Particle Local Wind attribute.
13. In Level Manager, double-click Fan_Frame (Global/3D Frames).

This 3D frame has been hierarchically attached to the fan.
14. In the 3D Frame Setup that opens, click Attribute, Create Attribute. In

the Create Attribute dialog box, select Particle Local Wind: Force/Decay

(Particle Systems Interactors), click Add Selected then Close. Click Play.
Nothing happens. This is because the range of the interactor is not great
enough to affect any particle systems.

15. Make sure you have Fan_Frame selected, then click Zoom on Selection.
The green disc with an arrow shows the presence of a dynamic attribute
(in this case Particle Local Wind: Force/Decay). Although its range is not
great enough, you can easily change this by using the 3D Layout manipula-
tion tools (as you would for any object).

16. Use Camera Dolly to move back, then click Select and Scale to increase
the deflector’s range so that it can interact with the passing pink car and
the two closest street lights. Finally Play the scene to verify that the desired
interaction exists.

NOTE In addition to having a Weight parameter that influences how particles are
affected by Particle Gravity, you can also use the Surface parameter to adjust
165

5

166

Authoring in Virtools Dev
how Particle Wind (Local or Global) affects individual particles. The Surface
parameter adjusts the apparent surface area of a particle – the larger the sur-
face area, the greater the effect of the Particle Wind parameter. A value for the
Surface parameter that is of the opposite sign to the Particle Wind attribute
creates an inverse reaction and the particle moves in the opposite direction of
the Particle Wind.

29.9.4 Multiple Attributes on a Single 3D Frame

Virtools Dev allows you to add several attributes to a single 3D frame. A 3D
frame could have an emitter, deflector and an interactor attached to it. It is also
possible to have several attributes of the same type (all deflectors or interac-
tors) such as Local Wind + Magnet + Vortex + Gravity attached to a single 3D
frame.

NOTE Virtools strongly recommends against combining multiple particle attributes on
a single frame. The particle system settings can conflict with each other, can use
significant processing resources, and are almost impossible to calibrate as
desired. However, you can change the type of attribute (deflector or interactor)
during run-time by using the BBs contained in the Logics/Attributes folder.

17. In Level Manager, select Fan_Frame (Global/3D Frames). You will now
add an emitter to this 3D frame, but first you should deactivate the
attribute Particle Local Wind.

18. In the Attribute part of 3D Frame Setup, double-click the Value cell of
Particle Local Wind: Force/Decay and in the Edit Parameter dialog box
ensure that the X and Y values are set to 0.

19. From Building Blocks, add DiscParticleSystem (Particles) to Fan_Frame
in the Level Manager.

20. In the Edit Parameters dialog box that appears, set the following parame-
ters: Speed 0.1, Lifespan 800, Weight 0.5 with a Variance of 0 for each
parameter. To generate a jet of particles, set Yaw Variance and Pitch

Variance to 0. Finally, choose a Texture, such as Spark. Click Play to test
your composition and refine your parameters in real-time if you think they
need to be changed.

5Particles
21. In the 3D Frame Setup, re-activate the attribute Particle Local Wind for
Fan_Frame by double-clicking the Value cell, and setting a value of 0.001
for X in the Edit Parameter dialog box. Click Play.
You can now see the influence the fan has on the particles.

22. Press F2.
The view is now the perspective of a camera mounted at the front of the
pink car. Press F2 to switch between cameras.

29.9.5 Magnet and Other Attributes

To finish this exercise, you will add a particle magnet to the center of the
scene.
23. In Level Manager, double-click CenterFrame (Global/3D Frames) to

open its setup. Click Attribute, Create Attribute, and in the Create

Attribute dialog box select Particle Magnet (Particle System Interactors),
click Add Selected, Close, then Play.
The change is not very obvious due to all the other interactors present. To
counter them, you will have to adjust the parameter value for Particle Mag-

net.
24. Increase the value of Particle Magnet from 1 to 5. Particles are now drawn

to the middle of the scene, despite the presence of other interactors.

The other attributes in Particle System Interactors function in much the same
way. Particle Vortex, Particle Mutation Box, etc. are applied to 3D frames and
adjusted using the same process. Now you just need to try them out to obtain
effects similar to those shown in 29-12!
167

5

168

Authoring in Virtools Dev
29-12 The same particle system, but different effects obtained by editing the parameters

29.9.6 Conclusion

In this exercise you learned to use more advanced emitter parameters such as
Weight, and Surface in conjunction with dynamic attributes - that is interac-
tors. You also learned to place these attributes, such as Particle Local Wind:

Force/Decay, Particle Gravity on moving and stationary 3D frames.

29.10 Exercise 3 - Deflectors
Deflectors are another part of the Virtools Dev particle system. Deflectors are
obstacles or barriers that stop particles or modify their path. As with interac-
tors, you create deflectors either via the 3D Frame Setup or by using the con-
text menu in Level Manager. The following parameters apply to all deflectors:

• Response: the factor by which a particle will be slowed down or sped
up by contact with an obstacle.

• Friction: the factor by which a particle's speed is affected when the
particle bounces off of an obstacle.

• Density: similar to a filter, the percentage of particles that pass
through the obstacle rather than bounce off of the obstacle. At a Den-

sity of 0% all particles pass, at 50% only one in two particles pass, at
100% all particles bounce. The exact equation for Density can be
found on the particle systems' help page.

5Particles
 For example, it is possible to adjust these attributes to create a deflector that
lets through just 20% of a particle system while violently rebounding the rest.

29.10.1 Start
1. Open the file Particles03.cmo.

This is the same scene as before but with a few changes: there are now par-
ticle systems at the front of the pink car and on the rotating fan. The street
lights no longer have particle systems - this is to lighten the CPU load.
Finally, the Particle Gravity interactor has been applied to the Level.

2. Click Play.
Particles pass through buildings and through the ground as there is a slight
gravitational pull.

29-13 Creating particle system deflectors

29.10.2 Creating a Deflector
3. In Level Manager, double-click FloorFrame (Global/3D Frame) to open

its Setup. Click Attribute, Create Attribute, and in the Create Attribute
dialog box, select Particle Infinite Plane Deflector (Particle Systems Deflec-
tors), click Add Selected, Close, and then Play.
You will see that the particles now rebound off the ground with force. You
will now adjust the parameters for the Particle Infinite Plane Deflector
attribute.
169

5

170

Authoring in Virtools Dev
4. Double-click the cell under Value for Particle Infinite Plane Deflector and
change Response to 0.7 and Friction to 0.4.
You can also change the value of the parameter Bounce for each emitter
(by right-clicking the appropriate BB). The parameter Bounce allows you
to have unique qualities for each particle system (as you have already seen
with Weight and Surface in the prior exercises).

29.10.3 Placing and Resizing a Deflector

At present, particles are still leaving the scene on all four sides. To stop the
particles from leaving the front and the left of the scene, you must place
deflectors on the two frames on these sides of the terrain.
5. In Level Manager, select BoundaryFrame01 and BoundaryFrame02 (Glo-

bal/Frame) by pressing CTRL and clicking them. Right-click the selection
and choose Add Attributes. In the Create Attribute dialog box, select
Particle Plane Deflector (Particles Systems Deflectors), click Add Selected
then Close.
Each 3D frame has changed shape and is now colored yellow, indicating
that the 3D frame now has the attribute Particle Plane Deflector.

NOTE Creating a multi-selection in Level Manager and choosing Add Attributes
when you right-click the selection is a handy way to give the same attribute to
several objects at the same time.

6. Select BoundaryFrame01 only, click Zoom on Selection, then Camera

Dolly - dragging the mouse slowly towards you to move the camera back.
Note that the deflector is not oriented as required - the deflector is parallel
to the ground, whereas it needs to be at right angles to act as a barrier to
the particles. You will have to orient the deflector the right way.

7. Click Select and Rotate and ensure that the X axis (red and facing right)
constraint is selected. Rotate the deflector approximately 90 degrees.
Now you must enlarge the deflector so that it covers the whole side.

5Particles
8. Click Select and Scale, ensuring you are in Uniform Scaling mode with
the X axis constraint still selected. Move your mouse so the deflector is
approximately the same length as one side of the terrain.

9. Do the same for BoundaryFrame02, but along the Z axis this time. Play
the scene.
You will see that the particles now bounce back off the deflectors, towards
the center of the terrain.

29.10.4 Placing a Deflector on an Object
The buildings in the background of the scene, called City_Background01
and City_Background02 are 3D objects composed of a dozen faces each.
The low number of faces makes them ideal for applying the Object Deflec-

tor attribute.
10. In Level Manager, select both City_Background01 and City_Background02

(Global/3D Object), right-click the selection and choose Add Attributes.
In the Create Attribute dialog box, select Particle Object Deflector (Parti-
cle Systems Deflectors), click Add Selected then Close.

NOTE Particle Object Deflector is the only deflector you can use with meshed objects.

The terrain is now completely enclosed for particles.
11. To finish, select all five buildings and the car, apply the attribute Particle

Object Deflector to them also, then click Play.

29.10.5 Editing Particle System Attributes

It can sometimes be difficult to remember which object has what attribute. You
can use the Attributes Manager to keep track of attributes and to edit them.
12. From the Editors menu, select Attributes Manager, which opens in the

lower half of the screen.
171

5

172

Authoring in Virtools Dev
On the left you will find all attribute types. As you select each attribute on
the left, the elements in your current scene with that attribute are listed on
the right.

13. Open Particle Systems Deflectors and select Particle Object Deflectors.
You will see all the objects in the scene that have this attribute. You can
easily edit, copy or paste any parameters using the context menu, or you
can use the appropriate icons in the Attributes Manager toolbar.

29.10.6 Conclusion

In this exercise you learned to place different deflectors on several objects, to
resize them and to edit their parameters via the Attributes Manager. Other
types of deflectors (spheres, cylinders, etc.) are created, resized and managed in
the same way.

29.11 Exercise 4 - Using Animated Textures
with Particles
You can also use animated textures as particles. Animated texture particles
require that animation images be embedded within a single texture. The tex-
ture is equally divided into at least as many images as you wish to display. Vir-
tools Dev then reads the images, from left to right and top to bottom, as you
will now see.
1. From the File menu, choose New Composition.
2. From VirtoolsResources, drag CompoundNumbers.jpg (Textures/Parti-

cles) into the 3D Layout.
3. If necessary, in Level Manager, double-click CompoundNumbers (Global/

Textures) to open Texture Setup.
The texture is composed of four colored numbers. To create this texture,
each number was created separately as a 16 x 16 pixel image, then all four

5Particles
images were joined together in a graphics program to make a 32 x 32 pixel
texture.

4. In 3D Layout, click Create 3D Frame.
5. From Building Blocks, drag SphericalParticleSystem (Particles) onto

the 3D frame in 3D Layout. In the Edit Parameters dialog box, specify
CompoundNumbers under Texture. Click Play.
All four colored numbers appear at the same time. You need to tell Vir-
tools Dev that the texture actually contains four separate images.

6. In Schematic, right-click SphericalParticleSystem and choose Edit

Parameters. Enter 4 under Texture Frame Count, and click OK.
NOTE Another interesting parameter for this exercise is Texture Loop - you should

leave it at No Loop for the moment but later try both Loop and To and Fro.

7. Click Play.
You will see that the particles cycle through the four images. Next you will
alter the Variance slightly, so that all images are visible at the same time.

8. In Schematic, right-click SphericalParticleSystem and choose Edit

Parameters. Set the Texture Speed Variance to 400 ms, then click OK.
You will see that all four numbers are now visible at the same time. Try
experimenting with the other Variances in the Edit Parameters dialog
box.

Once you have finished with numbers, try re-doing this exercise with the tex-
ture Compound.jpg, also found in VirtoolsResources (Textures/Particles).
You can also create your own textures - for example you could create a texture
with nine images showing differing flames, and use the particle system to cre-
ate a fire effect. Patience and a good graphics program are all you need!

NOTE Animated particle textures must be arranged in a square grid format. Legal val-
ues for the number of images within an animated particle texture are 4, 9, 16,
25, etc.
173

5

174

Authoring in Virtools Dev
29.12 Exercise 5 - Creating 3D Particles
Although simple sprites are usually enough for most particle effects, you may
occasionally need other particle types. Every emitter has settings that you
access by right-clicking the appropriate BB. In the Edit Settings dialog box,
you can choose the Maximum Number of particles (100 is the default, and
although you will rarely need more you can often do with less).

You can also choose the types of particles via the Particle Rendering parame-
ter. Try out the Point, Line, Sprite and especially Fast Sprite modes yourself to
see their differences. You can see a representation of the various modes avail-
able in 29-1.

Rendering particles as Objects is a little different.
1. Open the file Particles05.cmo.

You will see a 3D object, Cone, that has a very simple mesh. You can see in
its 3D Object Setup that it has only eight faces.

NOTE It is important to use simple mesh objects only when rendering particles as
objects, otherwise your frame rate is likely to plummet.

2. In Level Manager, right-click Cone (Global/3D Object), and choose
Place Selected in New Group.

NOTE You must place your objects into a new group when they are to be used for a
particle system. You can, of course, use more than one object for object parti-
cles.

3. Select ConeFrame (Global/Frame) and apply SphericalParticleSystem
(Particles). Click OK to accept the default parameters.

4. In Schematic, right-click SphericalParticleSystem and choose Edit Set-

tings. Choose Object under Particle Rendering, and New Group under
Objects. Click OK, then Play.
You will see particles composed of the 3D object (Cone) floating around
the emitter, similar to 29-14.

5Particles
29-14 Rendering object particles

5. Open the BB’s Edit Parameters dialog box, and modify Speed and Size
to investigate the different visual effects you can achieve.

6. In Level Manager, select another simple mesh object from VirtoolsRe-

sources (such as those contained in 3DEntities/Primitives) and add it to
your group (by dragging it to the group). Click Reset IC and then Play.

NOTE The BBs contained in Logics/Groups allow you to create particle systems with
dynamic content by adding objects at run-time.

29.12.1 Conclusion

In this exercise you learned how to create particle systems composed of 3D
objects. You learned that you must use a group and choose only simple 3D
objects with a low polygon count. Finally, you learned that you can use the
BBs in Logics/Group with object particle systems to create particle systems
with dynamic content.

29.13 Multiple Particle Systems
You can create multiple sources of particles with just one emitter by freezing the
emitter, moving it, and then reactivating it. Particles generated at each location
will not change when the emitter is frozen or moved and will continue to the
end of their Lifespan. A fireworks display using just one emitter is a simple
example of this technique.
175

5

176

Authoring in Virtools Dev
Alternatively, you can attach multiple particle system BBs to a single emitter
and switch between the particle systems as necessary.

29.14 Frame Rates with Particle Systems
You now know the essentials of using particle systems in Virtools Dev. It is
very easy to create stunning visual effects. However, you should not forget that
particle systems use a lot of system resources, both CPU time and memory.
The larger the number of particles, the greater the number of calculations
required which can result in unsatisfactory frame rates. To maintain an accept-
able frame rate, apply the following guidelines:

• Avoid generating a large number of particles. The default number of
particles for any particle system is 100, and although you will rarely
need more than this, you can very often do with much less. For exam-
ple, 16 particles are all that is needed for a realistic smoke effect.

• Try to avoid having several emitters active at the same time. Especially
avoid adding too many interactors or deflectors to a scene.

• Remember to hide as many parameter types as possible by clearing
their check boxes in the Edit Settings dialog box - this will gain you
some CPU time.

• Try to keep texture sizes to 16 x 16 or 32 x 32 pixels. You should also
avoid rectangular textures because some graphics cards only support
square textures.

• Use Fast Sprite mode (Particle Rendering in the Edit Settings dialog
box) as much as possible with small particles - Fast Sprite mode uses
only half the number of faces used by Sprite mode.

• Try to use the simplest deflector attributes, such as Particle Plane

Deflector or Particle Sphere Deflector rather than Particle Cylinder

Deflector and especially Particle Object Deflector. Infinite Plane Deflector
is the best choice for minimizing processing power requirements.

5Particles
• Only use Object mode (under Particle Rendering in the Edit Set-

tings dialog box) with small simple objects of few faces.
• Try to place your emitters so they are not all in the camera view frus-

tum at the same time. When a particle system is not in view, you can
deactivate or freeze that particle system.

NOTE It is better to freeze a particle system, if you have not finished with that particle
system, rather than stop a particle system, for it takes time for a particle sys-
tem to become stable.
177

5

178

Authoring in Virtools Dev

6

PART 6 - APPENDIX
At the end of the User Guide, last - but certainly not least - is the Appendix.
Our appendix is larger than most - mostly because of our extensive glossary.
The Virtools Glossary contains definitions for many Virtools words and terms
that newcomers and pros alike will come to appreciate for their clarity and
valuable contextual information.

The Glossary is not all there is to the Appendix - you will also find further
help for those tricky orientation and transformation questions.

The Appendix contains:
 30 Glossary - until you become a pro, one of your most valuable
resources; the Glossary is the definitive source for Virtools terminol-
ogy
 31 Controlling the Orientation of an Element - a short tutorial on
controlling orientation
 32 Example Transformations - more details on the matrices that
underlie 3D rendering
179

6

180

Looking at Virtools Dev

6Glossary
30 GLOSSARY

30.1 How to Use the Glossary
This Glossary contains definitions for and contextual information about
words, phrases, and relationships that are used in Virtools Dev.

Many of the definitions refer to one of the following fundamental terms,
reproduced here for your convenience. Words that are capitalized have their
own entries in the Glossary. Before you start reading the Glossary, we advise
you to review the following entries:

Behavior
A description of how an element responds to the environment. Applying a
Behavior makes an element interactive, either with the User or with other ele-
ments of the composition.The term Behavior is a general description and can
be used in place of Building Block (BB), Behavior Graph (BG) or Script.

Behavior Building Block, BB
The fundamental interactive elements within Virtools Dev, BBs encapsulate a
specific task. BBs are a visual representation of a software element known as a
function.

Behavioral Object, BeObject, CKBeObject
A CKClass. Any element, within a composition, to which a Behavior can be
applied.

CKClass
A generic label for any class or class definition used by Virtools Dev.
181

6

182

Looking at Virtools Dev
Element
A generic label for any non-behavioral (non-BB, non BG, non-Script) “thing”
within a composition.

NOTE All BeObjects are Elements but not all Elements are BeObjects: neither a Param-
eter nor an ObjectAnimation are BeObjects yet both are Elements.

pName, Parameter Name
The name associated with a given Parameter Input (pIn), Parameter Output
(pOut), Local Parameter or Setup Parameter.

pType, Parameter Type
The type associated with a given Parameter Input (pIn), Parameter Output
(pOut), Local Parameter or Setup Parameter.

pValue, Parameter Value
The value associated with a given Parameter Input (pIn), Parameter Output
(pOut), Local Parameter or Setup Parameter.

Type, Data Type
A representation of a specific genre of information and the rules for determin-
ing the validity of the information. A type can be a CKClass. For example, one
of the most basic data types in Virtools Dev is integer. An integer is any whole
number in the range –(231) through +(231 – 1). Therefore, the integer data
type defines a genre of information: whole numbers and the rules for the
range of legal values.
A 3D Entity is a much more complex data type and represents an object
instantiated from the class CK3dEntity.

30.2 Definitions and CKClasses
A number of the entries in this glossary are for the classes within the Virtools

6Glossary
Dev SDK. The headings for these entries are of the form:

2D Entity, CK2dEntity
The first term in the entry, 2D Entity, is the form used as a pType. The second
term in the entry, CK2dEntity, is the formal name of the corresponding class
within the Virtools Dev SDK. The formal name always starts with the letters
“CK”.
183

6

184

Looking at Virtools Dev
30.3 Terms and Definitions

2D Curve, CK2dCurve
A CKClass. A graphical description of the relationship between two values.
For example, in a Bezier Progression (Logics/Loops) you could use a pIn in
the form of a 2D Curve to show acceleration over time.

2D Entity, CK2dEntity
A CKClass. An element with a position and scale in the screen’s 2D coordinate
system.

NOTE The CKClasses 2D Sprite (CKSprite) and Sprite Text (CKSpriteText) descend
from this Class.

2D Frame
An instance of CK2dEntity. A 2D Frame may have a Material and a Texture. A
2D Frame is typically used as a place holder when creating a user interface.

2D Sprite, CKSprite
A CKClass. A 2D image rendered in the background (behind all 3D elements)
or in the foreground (in front of all 3D elements), a 2D Sprite can be of arbi-
trary size.
2D Sprites are often used to create interface elements. However, whenever
possible, use a 2D Frame (with a material and texture) for 2D Frames require
less processing power than 2D Sprites.

3D Entity, CK3DEntity
A CKClass. An element in Virtools Dev that has a position, orientation and
scale in 3D space.

6Glossary
3D Frame
An instance of the class CK3dEntity. A 3D Frame has a position, orientation,
and scale. A 3D Frame does not have an Author controlled Mesh. When visi-
ble, a 3D Frame is represented as a 3D cross.
A 3D Frame is often used as a reference point. For example, placing a camera
relative to the 3D Frame's position or orientation.

3D Object, CK3dObject
A CKClass. An element in Virtools Dev that has the characteristics of a 3D
Entity and a Mesh.

3D Sprite, CKSprite3D
A CKClass. An element composed of a 2D image that is rendered in 3D space.
A 3D Sprite can have a position, orientation, and scale.

Absolute Coordinates
In 2D, a screen position expressed in pixels.
In 3D, a position expressed in the world coordinate system.

Ambient Color
See “Material Color” on page 201.

Ambient Light
A pName. The non-directional, background light in a composition.

Ancestor, Parent
Any element, within a hierarchical relationship, that has one or more Child ele-
ments (children) or Descendents. Strictly, a Parent refers to the immediate
Ancestor only.
185

6

186

Looking at Virtools Dev
Angle
A pType. A value expressed in the form Turns:Angle where Turns is the
number of complete rotations and Angle is expressed in degrees.

NOTE CK2 performs <Angle> calculations using radians and not degrees. There are
2*PI radians in 360 degrees. An Angle of 0:180, expressed as a Float, has a
value of PI (approximately 3.14159).

NOTE CK2 considers the pTypes <Percentage>, <Float> and <Angle> as being the
same type.

Animation
A pName. A process by which an element is modified in 3D space, making the
element appear dynamic (rather than static). An Animation is composed of
Keyframes, where each Keyframe has a position, scale and orientation.

Animation Frame, Keyframe
A pName. A Keyframe is a reference frame in an animation.
For example, a Keyframe in a Character Animation is typically a pose that cap-
tures the state of the character at a critical instant in an Animation. Keyframes
are used to reduce the data storage requirement for an Animation. Intermedi-
ate Animation Frames (those frames required to maintain a smooth Animation
between Keyframes) are constructed by a process of Interpolation.

Animation Step
A pName. The current position within an Animation, expressed as a Percent-
age.

Applying a Building Block to an Element
Once attached, BBs are applied to a an element either

• explicitly - if the BB is targetable and the Author has defined the target,
or

6Glossary
• implicitly - applied to the owner element, the element to which the
Script containing the BB is attached.

Array, CKDataArray
A CKClass. A rectangular arrangement of cells, created as rows and columns,
where the columns define the types of data stored in the array and where the
rows contain values. Each cell contains a distinct data element. The data types
supported by Arrays include:

• Integer
• Float
• String
• CKObject
• Parameters

Attaching a Building Block to an Element
BBs are attached to an element at the moment of mouse button release in a drag
and drop operation.

Attribute
A Parameter associated with a BeObject. An Attribute has a Name and may
also have a Category. An Attribute typically consists of one or more Author-
editable Parameters. However, some Attributes, such as ZBuffer Only, cannot
be edited by the Author.
For example, an element with the Floor attribute is identified to the Behavioral
Engine as an element that should be treated as a floor so that Characters walk
on the element and not through the element.
Virtools Dev includes numerous predefined Attributes. Authors can also
define their own Attributes.
187

6

188

Looking at Virtools Dev
Author
A person using Virtools Dev to create interactive content or an application.

Author Mode
A state within Virtools Dev; Author Mode occurs when a composition is not
playing, and the Behavioral Engine is not active.

Axis
A pName. A vector used to define a coordinate system.

Behavior
A description of how an element responds to the environment. Applying a
Behavior makes an element interactive, either with the User or with other ele-
ments of the composition.
The term Behavior is a general description and can be used in place of Build-
ing Block (BB), Behavior Graph (BG), or Script.

Behavior Building Block, BB
The fundamental interactive elements within Virtools Dev, BBs encapsulate a
specific task. BBs are a visual representation of a software element known as a
function.
BBs can be categorized as:

1. Single Action: the BB completes processing within the current Frame.
A Single Action BB can stand alone or be part of a Behavior Loop.
Example: Set Fog (World Environments/Global).

2. Internally Looped: the BB is turned On and the BB is activated every
Frame until the BB is turned Off. Example: Keyboard Controller
(Controllers/Keyboard).

6Glossary
3. Externally Looped: the BB completes one step in the BB’s process
loop within the current Frame. Example: Bezier Progression (Log-
ics/Loops).
If the Author wants the BB to operate in the typical manner, an exter-
nal activation feedback loop is required.

NOTE An externally looped BB does not require that an external activation feedback
loop be present. It is possible to construct a Script in a manner such that the
external activation feedback loop is not required.

BBs can have one or more of
1. a Custom dialog box, denoted by a C in the lower left hand corner of

the icon
2. internal Settings, denoted by an S in the lower left hand corner of the

icon, or
3. a Variable configuration, denoted by a V in the lower left hand corner

of the icon, that may include
• a variable number of number of bIns
• a variable number of number of bOuts
• a variable number of number of pIns
• a variable number of number of pOuts
• the ability to change the type of one or more of the pIns and

pOuts
4. The ability to send a message, denoted by a Sender icon in the lower left

corner of the BB
5. The ability to receive a message, denoted by a Receiver icon in the lower

left corner of the BB
The following terms are used when describing how BBs are processed.

1. Activate denotes the first time a BB is executed in a Frame.
2. Deactivate denotes that an internally looped BB is no longer active.
189

6

190

Looking at Virtools Dev
3. Trigger denotes that a BB is activated by the external loop feedback
path.

4. Receive denotes that some BBs can be activated on more than one bIn
per Frame; we say that the BB receives activations on the relevant pIns.
Example: LIFO and FIFO (both in Logics/Streaming).

5. Store denotes that some BBs keep a record of received activations; we
say that the BB stores activations. The BB then processes the record of
received activations and generates new activations according to the
rules of that BB. Example: LIFO and FIFO.

6. Generate denotes that some BBs generate more activations than the BB
receives. Example: All But One (Logics/Streaming).

Behavior Graph, BG
A graph composed of one or more of the following elements: BBs, Parameter
Operations, Parameters, Behavior Links, Parameter Links, Comments, Short-
cuts, other BGs, etc. In other words, a BG is a visual representation of a
Behavior.
At first glance, a BG can look almost exactly like a Script. However, a BG is
distinct from a Script because the Author of the BG deliberately encapsulated
the Behavior. The Author encapsulated and named the BG so that the BG can
be saved and reused.
Virtools Dev treats a BG exactly the same as a BB. A BG can be attached to an
element and applied to an element in the same manner as a BB.
A BG can be considered an Author defined BB that, to an Author, works in
exactly the same way as a BB – a BG can have pIns, pOuts, bIns and bOuts.

NOTE Any time the documentation for Virtools Dev refers to using a (Behavior) Build-
ing Block or a BB within a composition, the reader can substitute Behavior
Graph or BG.

A BG can be constructed by encapsulating a portion of a Script or all of a
Script. A BG can also be constructed as an empty BG and elements added
until the desired functionality is achieved.

6Glossary
A BG can be expanded to show the elements that make up the BG or collapsed to
hide the elements that make up the BG.
An expanded BG is recognized by the surrounding bounding box and the
three diagonal lines in the bottom right corner of the bounding box.
A collapsed BG looks like a BB with the following exceptions: the BG label is
in Bold face and the type is Dark Gray in color.

Behavior Input, bIn
Located on the left side of a BB/BG. Some part of the code within a BB is
executed when a bIn is activated, deactivated, or triggered. Some BBs (particularly
Logics/Streaming) can also receive and store activations. For example, FIFO and
LIFO can receive n activations per Frame but both can only generate one acti-
vation per Frame.

Behavior Output, bOut
Located on the right side of a BB/BG. Generally, a bOut activates when the
processing to be performed by a BB in the current Frame (process loop) is
complete. Some BBs (particularly Logics/Streaming) can also generate activations
at their behavior outputs.
For example, Keep Activated and All But One both generate activations (acti-
vate more bOuts than bIns).
See Behavior Loop for further description of the processing done by a BB in a
given Frame.

Behavior Link, bLink
A link within a Script that propagates activations from bOuts to bIns. A
behavior link can have a Behavior Link Delay.

(Behavior) Link Delay
A bLink can have an associated delay, where the Link Delay is measured in
Frames (process loops). The Link Delay can be:
191

6

192

Looking at Virtools Dev
• 0 – propagate the activation within the current Frame
• 1 – propagate the activation in the next Frame

• n - propagate the activation in the nth Frame after the current Frame

Behavior Loop
A series of BBs (and/or BGs) connected by bLinks. BBs are connected
together in a manner that causes the BBs to be activated or triggered in a
repetitive fashion.
In other words, a Behavior Loop is the visual representation of a repetitive
operation. A repetitive operation is also known as an Iteration and the pro-
cess of repeating an operation is also known as Iterating.
In any implementation of a repetitive operation, a significant concern is to
ensure that there is an acceptable upper limit to the number of times that the
operation repeats. In other words, there needs to be a mechanism to ensure
that an operation is not repeated indefinitely.
Virtools Dev allows the Author to define the maximum number of operations
that may be performed in a single Frame via the Max Behavioral Iterations setting
in the Schematic.

NOTE The default value for Max Behavioral Iterations is 8000. The value of Max
Behavioral Iterations is saved with the composition.

Any Behavior Loop may have a cumulative delay of zero, as long as the loop is
not constantly active and as long as the number of iterations in a Frame does
not exceed the value of Max Behavioral Iterations. For example, Array and
Group Iterators (Logics/Arrays and Logics/Groups) often have a loop delay
of 0 so that all elements within the Array or Group are operated on within a
single Frame. However, the loop delay can be any positive value in the range of
0 to 32767.

NOTE Looping BBs (such as Timer (Logics/Loops)) that are time-based require a
cumulative loop delay of 1 Frame or the BB automatically changes to Frame-
based processing.

6Glossary
Behavioral Object, BeObject, CKBeObject
A CKClass. Any element, within a composition, to which a Behavior can be
applied.

Bezier (Curve)
A pType. A Bezier Curve (see Bezier Progression (Logics/Loops)) is a type
of a 2D Curve characterized by smooth transitions between curve segments
(as compared to Linear (see Linear Progression (Logics/Loops)).

Billboard
A pValue. An orientation constraint applied to an element. An element with a
Billboard constraint always faces the current viewpoint.

BodyPart, CKBodyPart
A CKClass. One or more 3D Entities combined to form a Character.

Boolean
A pType. A data type with only two permitted values, represented as a check
box. The check box is either selected (TRUE) or not selected (FALSE).

Bounding Box
The smallest box or rectangular volume that encloses an element or set of ele-
ments. A bounding box is typically used in performing collision detection.

Camera, CKCamera
A CKClass. An element that provides a viewpoint from which a composition
is rendered.

NOTE A Target Camera (CKTargetCamera) descends from this Class. A Target Camera
is a Camera that always points towards its Target.
193

6

194

Looking at Virtools Dev
Cell
A data point within an Array. For example, an Array with two rows and three
columns contains six cells.

Character, CKCharacter
A CKClass. A 3D Entity composed of one or more BodyParts, arranged as a
Hierarchy. A Character typically has Animations.

Channel
A pName. A Material added to a Mesh that blends with other Materials to cre-
ate a visual effect. Virtools Dev supports a maximum of 10 Channels per
Mesh.

Child, Descendent
Any element, within a hierarchical relationship, that has a Parent (Ancestor)
element. Strictly, a Child refers to the immediate Descendent only.

CKClass
A generic label for any class or class definition used by Virtools Dev.

Class, Class Definition
A template for a classification system; a description of a type of element. From
object oriented design, a design technique used to group elements based on
common characteristics and common behaviors.

Class Hierarchy
A classification system whereby classes are related via parent – child relation-
ships. A parent class is more general than a child class. A child class is a spe-
cialization of a parent class and inherits the characteristics and behaviors of the
parent class unless specifically redefined in the child class.

6Glossary
CK2
The Virtools Dev Behavioral Engine, responsible for the execution of all
behaviors within a composition.

CK_ID
A unique identifier assigned to every element in a composition. The CK_ID is
assigned as the element is added to a composition. The CK_ID for a given ele-
ment is regenerated every time a composition is loaded and is not guaranteed
to remain constant between reloads.

CMO – Virtools Composition File
An arrangement of one or more elements and associated behaviors, assembled
within Virtools Dev. A composition contains a Level and, if defined by the
Author, may contain Scenes and Places.

Curve, CKCurve
A CKClass. An element formed by a set of Curve Points that define a series of
line segments connected to create a single line.
Curves are Open (the Curve forms a line) or Closed (the Curve forms a loop).
Curves and curve sections are Linear (composed of straight line segments) or
Spline (composed of smoothly varying curves).
The Curve Points of the curve lie on the curve. The shape of the curve is
changed by moving or editing the Curve Points.
Curves are 3D elements and can be made visible or invisible in Author Mode
and Player Mode.

Curve Point, CKCurvePoint
A CKClass. A 3D Entity used to define a Curve.
195

6

196

Looking at Virtools Dev
Custom Dialog Box
A C in the bottom left corner of a BB indicates that a special dialog box is used
to control how the BB functions. Example: Unlimited Controller (Charac-
ters/Movement), Keyboard Mapper (Controllers/Keyboard).

Default Orientation
The default relationship between an element and the world coordinate system.
The Default orientation assumes that the element faces in the direction of the
positive Z-Axis (Dir), that the top of the element is in the direction of the posi-
tive Y-Axis (Up) and that the right side of the element is in the direction of the
positive X-Axis (Right).

Dependency (Options)
A pName. How a copy or delete operation affects the CKObjects used by
(aggregated with) that element.
For example, when deleting an element, the Author can choose to

• delete the element only (No Dependencies)
• delete the element, and all elements used by that element (Full Depen-

dencies)
• delete the element, and only selected elements used by that element

(Custom Dependencies)

Descendent, Child
Any element, within a hierarchical relationship, that has a Parent (Ancestor)
element. Strictly, a Child refers to the immediate Descendent only.

Dest, Destination
A pName. From Material, sets a surface's destination blending coefficient.
From Transformation, the end point of a translation. The Destination can be a
coordinate (expressed as a <Vector>) or an element within the composition.

6Glossary
Diffuse (Color)
See “Material Color” on page 201.

Diffuse (Light)
A pName. The directional light in a composition.

Dir

A pName. The facing direction of an element, generally the positive Z-axis.

Element
A generic label for any non-behavioral (non-BB, non BG, non-Script) “thing”
within a composition.

NOTE All BeObjects are Elements but not all Elements are BeObjects: neither a Param-
eter nor an ObjectAnimation are BeObjects yet both are Elements.

Emissive (Color)
See “Material Color” on page 201.

Extents
A pName. The bounds or limits of an element, typically as projected onto
another element or onto the planes defined by the world coordinate system.

Face
A triangular geometric element formed by three Vertices, a part of a Mesh.

Flow (Activation)
The order in which the BBs within a Script are processed. The activation flow
follows a path through the graph formed by BBs and bLinks.
197

6

198

Looking at Virtools Dev
Frame, Process Loop
A single pass through the processing of all elements of the composition. Sim-
plistically, Virtools Dev processes all behaviors then renders the scene for each
pass through the process loop (Frame). Each pass through the process loop
creates and displays a new image.

NOTE Advanced Authors often refer to the process loop as a Frame or a rendering
Frame. Do not confuse a Frame or a rendering Frame with a 2D Frame, a 3D
Frame, or an Animation Frame.

Grid, CKGrid
A CKClass. An element that divides the volume enclosed by the Grid into a
2D array of rectangular volumes known as squares. A Grid provides a mecha-
nism for projecting an element’s position in 3D coordinates to a 2D coordi-
nate system.

Group, CKGroup
A CKClass. A collection of references to elements, used to create a logical rela-
tionship between the members of the Group.

Guide
In Author mode, a rectangular grid used to guide placement of elements.

Hierarchy
From object oriented design, a logical organization that enforces a parent-child
organization on arbitrary elements.
For example, the file system on a computer is a hierarchical organization
where each drive is organized as a hierarchy with the drive letter as the root of a
given hierarchy. Organization proceeds in a tree-like structure where a drive
can contain folders and files and where folders can contain further folders or
files but files can not contain other files. Any folder is the parent to all folders
and files within the folder. A folder within another folder is a child of the
encompassing folder. Therefore, a folder can be both a parent to other folders

6Glossary
and files and a child of another folder. A folder can have many children but a
folder can only have one parent.
Note that root is a relative term; any parent is also the root for all of that par-
ent’s child elements within a hierarchy.
Within Virtools Dev, a Character is the most common form of a hierarchical
element. The various elements that form the body (such as torso, legs, arms,
etc.) are arranged in a hierarchical manner.
Hierarchies can be explored, created and altered using the Hierarchy Man-

ager or BBs.

Hierarchy (pIn)
A pName. A Boolean pIn in the form of a check box – if the check box is
selected, then the BB affects the elements' children.

Homogeneous Coordinates
In 2D, a screen position expressed relative to the current screen resolution
along each axis. Homogeneous Coordinates are used to ensure that, no matter
the screen resolution, 2D elements can maintain a constant relative size.
Homogeneous Coordinates are limited to the range 0.0 to 1.0.

Initial Conditions (IC)
On an element, a snapshot of the current state of an element; a record of the
data internal to an element at the instant that the Initial Conditions are set.
On a Script, a record of the current values of the local Parameters and the cur-
rent values of the input Parameters at the instant that the Initial Conditions are
set.
199

6

200

Looking at Virtools Dev
Instance, Instantiation
An Object is an instance of a Class; an Element that complies with or was cre-
ated from a Class Definition. An Object is Instantiated from a Class Defini-
tion.

Interpolator, Interpolate
A BB that interpolates between two values, that calculates a value between the
two values.
Interpolation determines the value at a given Percentage of the way between
the first value and the second value.

Iterator, Iterate
A BB that Iterates from a first value to a second value; for example: Counter
(Logics/Loops). Iteration counts from a first value to a second value using a
given increment per iteration.
A BB that Iterates over all members of a Collection; for example: Collection

Iterator (Logics/Loops).

Keyframe, Animation Frame
See “Animation Frame, Keyframe” on page 186.

Layer, CKLayer
A CKClass. On a Grid, a set of values associated with each square of the Grid.
Multiple Layers can be associated with a single Grid.

Light, CKLight
A CKClass. An element used to provide real-time lighting as opposed to using
pre-lit lighting.

NOTE A Target Light (CKTargetLight) descends from this Class. A Target Light is a Light
that always points toward its Target.

6Glossary
Level, CKLevel
A CKClass. The root element for a composition; the ancestor for all elements
in a composition.

Local Parameter
A Parameter contained within a Script, represented by a small rectangle. Local
Parameters are either located above pIns (the small triangles on top of a BB/
BG/paramOp) or located by themselves within a Script. Local Parameters are
connected to pIns by Parameter Links.

NOTE Two unique Local Parameters are allowed to have the same name. However, this
practice is not recommended due to the potential for confusion. For instance,
when you copy and paste a Local Parameter, you copy the Parameter’s name,
the Parameter’s type and the Parameter’s value to a new local Parameter: these
two Parameters are different, even though they have the same name (due to
the copy and paste operation). The Author is encouraged to use unique names
for each Parameter that they create.

Virtools Dev maintains a unique identifier for each local Parameter. To view a
local Parameter's identifier (called the CK_ID), select "CK Properties" in the
local Parameter's context menu.

Manager
A Plugin that performs system wide tasks such as collision management.

Material, CKMaterial
A CKClass. The surface characteristics of an element, how light affects the ele-
ment. A Material often has a Texture.

Material Color
The perceived color of an element, defined by the way the element's Material
interacts with the scene lighting. The Material Color has four components:

1. Ambient Color: describes how a Material reflects the ambient light in a
scene. Ambient light and ambient reflection are non-directional.
201

6

202

Looking at Virtools Dev
Typically, the ambient light level in a scene is much lower than the dif-
fuse light level. Therefore, ambient reflection typically has a lesser
impact on the perceived color of a Material than diffuse reflection and
is most noticeable when little or no diffuse light reflects off the Mate-
rial.

2. Diffuse Color: describes how a Material reflects the diffuse light in a
scene. Diffuse reflection is directional - the angle of incidence of the
diffuse light affects the overall intensity of the reflection.
Typically, the diffuse light is the dominant light source in a scene.
Therefore, diffuse reflection typically plays the largest part in deter-
mining the perceived color of a Material.

NOTE The alpha value of the diffuse color is used for alpha transparency calculations.

3. Specular Color: describes how a Material reflects the specular light in
a scene. Specular lighting is responsible for the creation of specular
highlights on a Material.
The appearance of a highlight is dependent on the viewing angle and
the specular power. The greater the value of the specular power, the
thinner the specular highlight.

4. Emissive Color: describes how a Material can be used to make a ren-
dered object appear to be self-luminous. A Material's emissive color
creates the illusion that a Material is illuminated (from within), without
incurring the computational overhead of adding a light to the scene.

NOTE A self-illuminated Material does not act as a source of illumination for other ele-
ments.

Matrix
An ordered collection of data. The local matrix and the world matrix associ-
ated with each 3D Entity are used to store the position, orientation, and scale
of that element.

6Glossary
Mesh, CKMesh
A CKClass. A collection of faces that define the geometric surface of an ele-
ment. A Mesh is usually covered by a Material.

Message, CKMessage
A CKClass. A means of transferring information between elements or
between Scripts. Typically, messages are used to signal a change in state, to
request that some task be performed, and to signal that some task has com-
pleted.

NOTE Messages always have a delay of one pass through the process loop. That is, a
message is sent in the current Frame but the message is not received until the
next Frame (process loop). In other words, messages experience a one Frame
delay before they are delivered.

NMS – Virtools Script File
A file containing a Script or a BG.

NMO – Virtools Object File
A file containing one or more elements, with or without their applied Scripts.

Nodal Link
A link between Nodes in a Nodal Path. A Nodal Link may allow movement in
one direction only or in both directions. A Nodal Link also has a difficulty value
used to determine the cost of following that Nodal Link.

Nodal Path, Path
A map, composed of Nodes and Nodal Links between Nodes, used to prede-
termine the set of possible paths for an element between a source and a desti-
nation. Often used to determine the shortest allowed path between two points.

Node
An endpoint for a Nodal Link, a junction between links in a Nodal Path.
203

6

204

Looking at Virtools Dev
Normalization, Normalized Value
A value constrained to the range 0.0 through 1.0 by scaling relative to a maxi-
mum value. A value is normalized by dividing the value by that value's maxi-
mum value.

Object
From object oriented design, an instance of a class; an element rather than a
description of an element (a class).

Obstacle
An element tested by collision detection mechanisms.

Orientation
The correlation between an element’s Right, Dir, and Up vectors, an element’s
local coordinate system, and the world coordinate system.

Origin
The point at which the vectors that define a coordinate system intersect.

Parameter
Used to transfer data values between behaviors and to add information to
BeObjects (through Attributes). Many behaviors use the values of their pIns to
control their processing.
A Parameter has a name (pName) and contains a value (pValue) expressed in a
given type (pType) such as <Integer>, <String>, <Vector>, etc. A Parameter
can be static (the value is fixed, such as a value entered by the Author) or
dynamic (the value can change, based upon other factors). The value of a
Parameter is provided to a Behavior or to a paramOp via a pLink or via a
shortcut.

6Glossary
Parameter Input, pIn
Data values received by a paramOp or by a BB. pIns have a source. pIns are rep-
resented by the small triangles on top of a BB/BG/paramOp.
In traditional programming terms, Parameter Inputs are the arguments to the
function encapsulated by a BB, BG or paramOp.

Parameter Link, pLink
A link that propagates a Parameter value either from a pOut or from a Local
Parameter to a pIn.

NOTE When a BB is added to a Script (in the Schematic) or to an element (in the 3D
Layout), the links between the default Local Parameters and the corresponding
pIns are not visible due to the scale of the image. However, the link is immedi-
ately visible if the Local Parameter is moved from the default location.

Parameter Operation, paramOp
A simple operation performed on a single Parameter or performed between a
pair of Parameters. A paramOp is only evaluated when the result is requested
by another paramOp or a BB.
Many calculations and data retrieval operations (Get Value) are implemented
as paramOps.

Parameter Operation Link
A simple operation, automatically performed, on a single Parameter when a
pOut is connected to a pIn of incompatible type and at least one paramOp
exists to convert the pOut type to the pIn type. A Parameter Operation Link is
a pLink that performs a type conversion.
The type conversion occurs automatically and the default paramOp icon is not
displayed. Instead, a Parameter Operation Link is identified by the name of the
paramOp displayed along the link. By default, a Parameter Operation Link is
displayed in a different color than a pLink.
205

6

206

Looking at Virtools Dev
Parameter Output, pOut
Data values generated by a paramOp or by a BB. pOuts have a destination.
pOuts are represented by the small triangles on the bottom of a BB/BG/para-
mOp.
In traditional programming terms, pOuts are the values returned by the func-
tion encapsulated by a BB, BG or paramOp.

Parent, Ancestor
Any element, within a hierarchical relationship, that has one or more child ele-
ments (children) or Descendents. Strictly, a Parent refers to the immediate
Ancestor only.

Path, Nodal Path
A graph composed of Nodes and Nodal Links between Nodes, used to prede-
termine the set of possible paths for an element between a source and a desti-
nation. Often used to determine the shortest allowed path between two points.

Percentage
A pType. A value bound to the range 0.0 to 1.0, a value expressed as a percent
in the range of 0% to 100%.

NOTE CK2 considers the pTypes Percentage, Float and Angle as being the same type.

Place, CKPlace
A CKClass. An abstract element used to define the elements found within a
physical locale in a composition. A Place is a geometric construct used to
define an area of related geometry.
For example, within a building, each room can be defined as a separate Place.
Places contain the elements within the Place. An element in a Place does not
appear in the Global list of elements.

6Glossary
Places are very useful when using portal optimization to reduce the processing
requirements of a composition.

Player
An application, such as the Virtools Web Player, that can process and render a
Composition.

Player Mode
A state within Virtools Dev; Virtools Dev enters Player Mode when a compo-
sition is playing and rendered in 3D Layout.

Plugin
A Dynamic Link Library (DLL) that extends the capabilities of the base CK2
engine.

pName, Parameter Name
The name associated with a given Parameter Input (pIn), Parameter Output
(pOut), Local Parameter or Setup Parameter.

Portal
A connector between two Places, used by the Portal Manager to reduce the
render processing requirements of a composition. A Portal is a special 3D
Entity (a 3D Frame with a Portal flag) that is used to determine which Places
are potentially visible from the current viewpoint and, therefore, rendered.

Priority
Allows the Author to control the activation order of elements and behaviors in
the current Frame.
By default, Virtools Dev implements a pure message passing model where
each object acts independently and asynchronously. In a pure message passing
model, there is no priority – each object exhibits the appropriate behavioral
207

6

208

Looking at Virtools Dev
response to the received messages. However, there may be times when an
Author must be able to guarantee the order in which behaviors are activated.
Virtools Dev allows the Author to specify the activation order by controlling
the priority of objects, scripts, BGs and BBs.
The priority for an object or behavior can be set to a value in the range
+32767 to –32768, where +32767 is the highest priority.
Behavior processing is performed in order of priority. The objects within a
composition that have scripts attached are sorted from highest priority to low-
est priority. The object with the highest priority is processed first.
If there are multiple Scripts attached to that object, the Script with the highest
priority is processed first. All of an object’s scripts are processed before pro-
ceeding to the next highest priority element.
Within a Script, if several BBs are attached to the Start (not recommended)
and all BBs have the same link delay, then the BB with the highest priority is
processed first.
If several elements have the same priority, then it is impossible to predict
which element will be processed first – the Behavioral Engine will simply
choose one at random.
Controlling priority can be useful for resolving conflict when BBs, BGs, or
Scripts seem to be interfering with each other.

Process Loop, Frame
A single pass through the processing of all elements of the composition. In the
simplest model of the process loop, Virtools Dev executes all behaviors then
renders the scene. More detailed models are available in the Virtools Dev SDK
documentation.

NOTE Advanced Authors often refer to the process loop as a Frame or a rendering
Frame. Do not confuse a Frame or a rendering Frame with a 2D Frame, a 3D
Frame, or an Animation Frame.

6Glossary
Progression
A BB that iterates from a first value to a second value.
A Progression counts from a first value to a second value using a given incre-
ment per iteration. The increment can be fixed (Linear Progression (Logics/
Loops)) or variable (Bezier Progression (Logics/Loops)).

Progression Curve
A pName. A mechanism for visually describing the increment used at each
step of a Progression.

pType, Parameter Type
The type associated with a given Parameter Input (pIn), Parameter Output
(pOut), Local Parameter or Setup Parameter. A pType is expressed as
<pType>.

pValue, Parameter Value
The value associated with a given Parameter Input, Parameter Output, Local
Parameter or Setup Parameter.

Referential
A pName. The element used as the point of reference for an operation. Typi-
cally, the element used as the point of reference for calculating a Transforma-
tion (for example, a translation).

Render Object, CKRenderObject
A CKClass. An element that is rendered, that is shown on-screen in the render
window.
209

6

210

Looking at Virtools Dev
Resource
Any element, BB, or BG, that can be directly imported into a composition (via
drag and drop or file selection); any element in a Virtools Dev compatible file
format.

Right
If an element is assumed to be a Character, the direction of the element’s right
hand with respect to the origin of the Local Coordinate System.

Root
The topmost element within a hierarchy. Root is also a relative term; any par-
ent is also the root for all descendent elements within a hierarchy.
The Level is the root of a composition.

Scale
A pName. A factor that describes the element's current size compared to it's
original size.

Scene, CKScene
A CKClass. An abstract element used to define the elements within a narrative
unit of a composition. A Scene is a logical construct used to define a group of
related elements and is not restricted to a geometric locale within a composi-
tion.
For example, scenes can be used to control which elements are active at what
time: in this part of the story, only these elements are active whereas in that part
of the story only those elements are active. Remember, only active elements are
processed.
Scenes contain references to elements and not copies of elements or the ele-
ments themselves.
Scenes are very useful when attempting to reduce the processing requirements
of a composition.

6Glossary
Script
The visual representation of a behavior, applied to an element, as represented in
the Schematic.
A Script is composed of two parts – a header and a body.
The Script header displays the name and owner of the Script, and optionally a
small snapshot.
The Script body is composed of the Start and one or more BBs, BGs, para-
mOps, Parameters, bLinks, pLinks, comments, etc.
Mathematically, a Script is a graph whose nodes represent operations (BBs or
paramOps) and whose edges represent possible paths of data flow (pLinks)
and program flow (bLinks).
A Script is processed by following the bLinks as directed by the BBs contained
within the Script.

Setting
An S in the bottom left corner of a BB indicates that the BB has internal set-
tings that can be edited through its’ context menu.
Settings can take many forms. For example, Settings can control whether a BB
is time-based or Frame-based (Linear Progression (Logics/Loops)), or what
aspects of a BB are actually calculated at each activation (the Settings for
Mouse Waiter (Controllers/Mouse) control what bOuts are available and,
therefore, calculated each Frame).

Setup Parameter
A parameter available in the Setup for an element.

Sibling (Classes)
Classes that share a common parent class.
211

6

212

Looking at Virtools Dev
Sound, CKSound
A CKClass. A data set containing a digital representation of a sound.

NOTE Midi Sound (CKMidiSound) and Wave Sound (CKWaveSound) descend from this
Class.

(Parameter) Shortcut
A Parameter Shortcut is similar to the desktop shortcuts used in Windows. A
Parameter Shortcut is composed of a destination and a source, each identified
by arrow icons.
A Shortcut is actually another instance of a particular Parameter. Therefore,
the CK_ID of the destination has the same CK_ID as the source.
A Shortcut is dynamically updated and is often used to make a Parameter avail-
able across Script boundaries (the source is in one Script and the destination is
in another Script) or used to make a Parameter available within a Script with-
out using a pLink. A Shortcut can also be used to make a Parameter available
to multiple locations without requiring a pLink between the source and each
destination.

NOTE An Attribute is a Parameter attached to a BeObject. Therefore, a shortcut to an
Attribute can also be created.

Specular
See “Material Color” on page 201.

Specular (Light)
A pName. A directional light with the specular flag set, a light responsible for
highlights on a Material.

Sprite Text, CKSpriteText
A CKClass. A Sprite used to draw text on the screen.

6Glossary
Src, Source
A pName. From Material, sets a surface's blending coefficient.
From Transformation, the start point of a translation. The Source can be a
coordinate (expressed as a <Vector>) or the identity of an element within the
composition.

Start
The left-most icon within the body of a Script, the point at which a Script
begins.

Target Parameter
A special type of pIn used to explicitly identify the element affected by the
Behavior.
When a Behavior is attached to an element, that element becomes the owner of
the Behavior. Typically, a Behavior attached to an element is implicitly targeted at
the Script owner.
For example, Translate (3D Transformations/Basic) normally modifies the
position of its owner.
However, an Author may want a Behavior to affect a different element than
the owner. In this case, the Behavior must be explicitly targeted at a different ele-
ment.
Alternatively, an Author may attach a Behavior to an element of a different
type than the type supported by the Behavior (for example, an Author can
attach a Rotate behavior to a texture). A Target Parameter is automatically gen-
erated by Virtools Dev in the case of an incompatible class.
A BB is targetable only if there is a “T” in the Targetable column (between the
“Apply to” and “Description” columns) within the Building Blocks window.
If a Target Parameter does not already exist on a targetable behavior, a Target
Parameter can be added by selecting “Add Target Parameter” from the context
menu. A new pIn is created as the leftmost pIn. A Target Parameter input is
213

6

214

Looking at Virtools Dev
identified by a pair of small squares (rather than the usual single small triangle
for a regular pIn).
See also Applying Building Blocks to Elements.

Texture, CKTexture
A CKClass. An image used by a Material to give an element a certain appear-
ance. A Texture should have dimensions that are an integer power of 2 (e.g. 32
* 64, 128 * 128).

Transformation
An operation that affects one or more of the position, orientation, and scale of
an element.

Type, Data Type
A representation of a specific genre of information and the rules for determin-
ing the validity of the information. A type can be a CKClass.
For example, one of the most basic data types in Virtools Dev is integer. An
integer is any whole number in the range –(231) through +(231 – 1). Therefore,
the integer data type defines a genre of information: whole numbers and the
rules for the range of legal values.
A 3D Entity is a much more complex data type and represents an object
instantiated from the class CK3dEntity.

Up
The Y-Axis in the default orientation.

User
A person interacting with a CMO or with an application created using Virtools
Dev; the end user.

6Glossary
UV (Texture Coordinates)
The coordinate system used to define texture coordinates on a Mesh.
U and V coordinates are normalized to the size of the texture. A UV coordi-
nate of (0,0) indicates the top left corner of the texture. A UV coordinate of
(1,1) indicates the bottom right corner of the texture.

Variable
A V in the bottom left corner of a BB indicates that the Behavior is variable.
That is, the Author can do one or more of the following:

1. add bIns,
2. add bOuts,
3. add pIns,
4. add pOuts,
5. change some or all of the types of the pIns and/or pOuts.

For example, Sequencer (Logics/Streaming) supports the construction of
additional bOuts via the context menu. Parameter Selector (Logics/Stream-
ing) supports the construction of additional pIns via the context menu.

NOTE When changing pTypes, not all pTypes are available for all BBs.

For example, Calculator (Logics/Calculator) can accept pIns of pType
<Float> or pType <Vector> only, whereas Identity (Logics/Calculator) can
accept any pType. The Author must check each behavior's documentation to
determine the supported data types.

Vector
A pType. A directed quantity; a magnitude and a direction. A Vector is always
defined relative to a Referential.
Virtools Dev uses two types of vectors: a Vector2D for 2D coordinate systems
(for example, screen coordinates expressed as [X,Y]) and a Vector for 3D
coordinate systems (for example, world coordinates expressed as [X,Y,Z]).
215

6

216

Looking at Virtools Dev
The magnitude of a vector (also known as the length of a vector) is defined as:
1. Vector2D

Magnitude = SquareRoot(X2 + Y2)
2. Vector

Magnitude = SquareRoot(X2 + Y2 + Z2)

The magnitude of a vector can be calculated using the paramOp Get Magni-

tude:
1. Vector2D

<Float> Get Magnitude <Vector2D>
2. Vector

<Float> Get Magnitude <Vector>
The direction of a Vector is defined as a ray (a directed line) with the origin of
the ray at the origin of the Referential and extending through the point (rela-
tive to the origin of the Referential) defined by the value of the Vector.

Vertex
A point in 3D space, used to define a Face in a Mesh. A Face is defined with
three vertices.

VMO - Virtools Player File
A composition that has been exported from Virtools Dev using the Export to
Player command from the File menu. The contents of a VMO file are hidden
and can not be opened or edited by Virtools Dev.

Workset
An arbitrary collection of elements and scripts constructed in the Level Man-
ager. A Workset is used to organize a composition (without regard to the type
of an element) and to control the visibility (within the Schematic) of the
Scripts attached to members of the Workset.

6Controlling the Orientation of an Element
31 CONTROLLING THE
ORIENTATION OF AN ELEMENT
Virtools Dev can control the orientation of an element in two ways:

1. temporarily (until the next time the orientation is deliberately
changed), via Set Orientation (3D Transformation/Basic), and

2. permanently (within the composition) with Change Referential
(Mesh Modifications/Local Deformation).

Set Orientation calculates a transform (a transformation matrix) that applies
the appropriate operations to transform the element’s local coordinate system
into the desired coordinate system. The transform is applied to the desired ele-
ment every time Set Orientation is activated.

Set Orientation is often used to keep an element facing in the same direction
as the referential, particularly if the referential changes often. Virtools Dev can
maintain a copy of the element’s original orientation (via Initial Conditions) if
you need to be able to restore the element to its original orientation.

Change Referential also calculates a transform (a transformation matrix) that
applies the appropriate operations to transform the element’s local coordinate
system into the desired coordinate system. The transform is applied to the
desired element when Change Referential is activated and, within the com-
position, the change is permanent. You must ensure that no Initial Conditions (IC)
are set on an element before applying Change Referential.

The Change Referential BB is often used to ensure that a group of elements
share a common orientation.

Set Orientation, due to its dynamic nature, is more flexible than Change Ref-

erential. However, the increased flexibility comes at the cost of additional
processing overhead at runtime.

For example, to temporarily transform the orientation of Element 1 in 14-7 on
page 67 to match the Virtools Dev default coordinate system, perform the fol-
217

6

218

Looking at Virtools Dev
lowing steps.
1. Apply Set Orientation to Element1 and open the Edit Parameters dialog

box.
2. Set Referential to --NULL-- to ensure that orientation calculations are per-

formed relative to the orientation of the world.
3. Leave Up, Dir, and Local Up set to the default values.
4. Set Local Dir to (X=1, Y=0, Z=0) to inform Virtools Dev that the ele-

ment’s forward facing direction is the element’s local positive X-axis.

Element1 now faces in the same direction as the world’s positive Z-axis. Now,
when you direct Virtools Dev to move the element forward in the default ori-
entation (in the positive Z-axis direction relative to the world coordinate sys-
tem), the element moves forward as expected.

6Example Transformations
32 EXAMPLE TRANSFORMATIONS
The essential data for each coordinate system is stored in a Local matrix and a
World matrix respectively. The local matrix and the world matrix are both 4 * 4
matrices of the form show in 32-1.
32-1 A coordinate system matrix

where:

(X,Y,Z)x = The world space coordinates of the X axis of the local coordinate
system expressed as a unit vector (the first three rows of the first column)

(X,Y,Z)y = The world space coordinates of the Y axis of the local coordinate
system expressed as a unit vector (the first three rows of the second column)

(X,Y,Z)z = The world space coordinates of the Z axis of the local coordinate
system expressed as a unit vector (the first three rows of the third column)

(X,Y,Z)o = The world space coordinates of the origin of the local coordinate
system (the first three columns of the fourth row)

For each axis, the axis is defined as a unit vector (a vector of length 1) in the
world coordinate system.

The values contained in the fourth column are constant.

In the Parameter Debugger, this matrix is displayed as:

[Xx, Xy, Xz, 0][Yx, Yy, Yz, 0][Zx, Zy, Zz, 0][Ox, Oy, Oz, 1]

[Right][Up][Dir][Position]

Xx Xy Xz 0 Right
Yx Yy Yz 0 Up
Zx Zy Zz 0 Dir
Xo Yo Zo 1 Position
219

6

220

Looking at Virtools Dev
32.1 Translation
A translation with respect to the local coordinate system is expressed as:
32-2 Translation matrix

where:

(X,Y,Z)t = The translation vector that defines how far the target entity moves
relative to the target entity’s current position.

32.2 Rotation

32.2.1 About Local X Axis

A rotation about the local X axis is expressed as:
32-3 Matrix for rotation about X axis

where:

Cx = the cosine of the angle of rotation about the X axis

Sx = the sine of the angle of rotation about the X axis

1 0 0 0
0 1 0 0
0 0 1 0
Xt Yt Zt 1

1 0 0 0
0 Cx Sx 0
0 -Sx Cx 0
0 0 0 1

6Example Transformations
32.2.2 About Local Y Axis

A rotation about the local Y axis is expressed as:
32-4 Matrix for rotation about Y axis

where:

Cy = the cosine of the angle of rotation about the Y axis

Sy = the sine of the angle of rotation about the Y axis

32.2.3 About Local Z Axis

A rotation about the local Z axis is expressed as:
32-5 Matrix for rotation about Z axis

where:

Cz = the cosine of the angle of rotation about the Z axis

Sz = the sine of the angle of rotation about the Z axis

Cy 0 -Sy 0
0 1 0 0

Sy 0 Cy 0
0 0 0 1

Cz Sz 0 0
-Sz Cz 0 0
0 0 1 0
0 0 0 1
221

6

222

Looking at Virtools Dev
32.3 Scale
A scale factor is expressed as:
32-6 Scale factor

where:

Sx = the scale factor along the X axis

Sz = the scale factor along the Y axis

Sx 0 0 0
0 Sy 0 0
0 0 Sx 0
0 0 0 1

Index
Numerics
2D Frames, creating 42
2D Point, see Point
2D Screen coordinates, see Coordinate
syatem
2D Vector, see Vectors
3D Frames, creating 42
3D Layout 39

camera navigation tools 43
creation tools 42
exploring 40
selecting pivot point 41
selection tools 40
snapping elements 41
top toolbar 39, 40
transformation tools 40

3D Vector, see Vectors

A
Absolute coordinate system, see
Coordinate system
Acronyms 28
Aggregation 86
Animations

adding to a character 134
API 79
Arrays 95

creating 48
Attributes 31, 127

adding to an element 143
Attributes Manager 127
shortcuts 128

Axis, see Referential
Axis, selecting, see also Referential 41
Axis,constraining 41

B
Behavior 57

adding outputs (bOuts) 146
Building Block (BB) 107

adding to a script 146
adding to CMO 46
attaching to element 46, 137
processing 113
symbols 107

graph (BG) 114
input (bIn) 108
link (bLink) 108
link delays 139

editing 139
showing/hiding 51

loops 103
output (bOut)
processing 97, 99
reusing 114
scripts 107

Behavior Building Block (BB), see
Behavior
Behavioral Engine 13, 101, 102
BG, see Behavior
bIn, see Behavior
bLink, see Behavior
bOut, see Behavior
223

224

Index
C
C, Custom Dialog Box 111
Cameras

activating at Scene start 137
creating 42, 136
default 136
in rendering process 75
navigating 43, 134
selecting 40
switching dynamically 146
targeting 138

Characters
adding to a Scene 134
controlling 139

CKClass 84
Class hierarchy, class system 83
Compositions (CMO) 57, 91

exporting to VMO 149
saving 141
sharing with others 150

Coordinate system 59
2D 59
3D 60
local/relative 63
world/absolute 64

Create Web Page 150
Creation tools

3D Layout 42
Level Manager 48

Curves, creating 42

D
Data organization 83
Depth of field 75
Depth sort 76
DirectX5 80
DirectX7 80
Document conventions 27
Documentation 23

E
Element 57
Event log, displaying 53

F
Frame, process loop 97
Frames per Second (FPS) 98
Further resources 23

G
Grids, creating 42
Groups 95

creating 48, 145
selection 40

Guides, reference and screen 42

H
Help, getting 23

I
IC, see Initial Conditions

Index
Inheritance 85
Initial Conditions (IC)

resetting 54
setting 48

Interactivity
creating 46
managing 49

L
Left toolbar

3D Layout 40
Level Manager 48

Level 73, 92
switching mode 48

Level Manager 47
left toolbar 48
top toolbar 47, 48

Lights, creating 42
Linking 50, 139
Local coordinate system, see Coordinate
system
Local parameters, see Parameters

M
Materials 87

creating 42
self illuminating 133

Matrix 71
Measurement, units of 61
Media

adding to CMO 46
classifying 83

importing 132
sharing, see Sharing elements

Menus, description 37
Mesh sharing, see Sharing elements
Meshes 86
Messages 99, 113

exploring 50
Metric system 61

O
OpenGL 80
Organizing data 83
Orientation 65, 66

P
Parameters 117

changing type (pType) 147
links (pLink) 117
name 30
name (pName)
operations (paramOps) 121
shortcuts 120
showing local showing
target 109
This 119
type (pType)
value (pValue)

paramOps, see Parameters 121
Particles 129
Places 73, 94

creating 48
Plane, see Referential
225

226

Index
Plane, selecting, see also Referential 41
Play/Pause 54

switching between modes 141
pLinks (parameter links), see parameters
pName (parameter name), see Parameters
Point

2D 59
3D 62

Portals 94
creating 42
management 94

Preferences, general 40
Priority 104

showing/hiding 51
Process loop 97
Processing Building Blocks (BBs) 113
pType (parameter type), see Parameters
30
pValue (parameter value), see Parameters

Q
Quick start 129

R
Referential 64

selecting axis or plane 41
Relative coordinate system, see
Coordinate system
Render engine

customizing 79
Rendering 79

order 76

process 75
Reset IC 54
Resources, BB and data 45
Rotate, see Transformations

S
S, Settings (BB) 111
Scale 61

see also Transformations
Scenes 73, 93

creating 48
profiling 53
rendering 98
switching mode 48

Schematic 49
exploring 50
top toolbar 50

Screen coordinates, see Coordinate
system
Scripts

creating 48
debugger 51
showing/hiding header 50
visualizing 49

Selecting, in 3D Layout 40
Selection 40

locking 40
mode 40

Sharing elements 88
Snapshot, taking 39
Space, segmenting in a CMO 94
Specialization 86

Index
Status bar 53

T
Target parameter, see Parameters
Targetable 110
Textures 87

creating 42
This, see Parameters
Time, segmenting in a CMO 93
Top toolbar

3D Layout 39
Level Manager 47
Schematic 50

Trace mode, activating/deactivating 51
Transformations 69

tools, see 3D Layout
Translate, see Transformations
Tutorials 129

U
Unit scale 61
User guide

how to use 17
organization 27

V
V, Variable BB 111
Vector2d, see Vectors
Vector3d, see Vectors
Vectors 62
Virtools Dev

Authoring Application 13

Behavioral Engine 13
installing 17
managers 13, 99
MiniSite 129
Render Engine 14
screen at start-up 35
Web Player 14, 150

VMO 149

W
Windows, moving/resizing 36
Workset, creating 48
World coordinate system, see Coordinate
system
Worlds 73

Z
Z Buffering 75
227

	Virtools User Guide
	Table of Contents
	Part 1 - Introducing Virtools Dev
	1 What is Virtools Dev?
	1.1 An Authoring Application
	1.2 A Behavioral Engine (CK2)
	1.3 A Render Engine
	1.4 A Web Player
	1.5 A Software Development Kit

	2 About this User Guide
	2.1 Introducing Virtools Dev
	2.2 Looking at Virtools Dev
	2.3 3D Space in Virtools Dev
	2.4 Understanding Virtools Dev
	2.5 Authoring in Virtools Dev
	2.6 Appendix

	3 Installing Virtools Dev
	3.1 Hardware
	3.2 Software
	3.3 Installing Virtools Dev

	4 Getting More Information
	4.1 Virtools Dev Authoring Application
	4.1.1 Screentips
	4.1.2 Online Reference

	4.2 SDK Documentation
	4.3 Virtools MiniSite
	4.4 Internet Based Resources

	5 Document Conventions
	5.1 Organization
	5.2 Emphasis
	5.3 Lists
	5.4 Figures
	5.5 Acronyms
	5.6 Building Blocks (BBs)
	5.7 Parameter Operations (paramOps)
	5.8 Parameter Names (pNames)
	5.9 Parameter Types (pTypes)
	5.10 Parameter Values (pValues)
	5.11 File, Resource and Object Names
	5.12 Graphical User Interface (GUI) Elements
	5.13 Attributes

	Part 2 - Looking at Virtools Dev
	6 Virtools Dev at Start-Up
	7 Menu Bar
	8 3D Layout
	8.1 Top Toolbar
	8.2 Left Toolbar
	8.2.1 Selection Tools
	8.2.2 Transformation Tools
	8.2.3 Reference and Screen Guides
	8.2.4 Creation Tools
	8.2.5 Camera Navigation Tools

	9 Building Blocks and Data Resources
	10 Level Manager
	10.0.1 Top Toolbar
	10.0.2 Left Toolbar

	11 Schematic
	11.0.1 Top Toolbar

	12 Status Bar

	Part 3 - 3D Space in Virtools Dev
	13 Virtools Dev and 3D Graphics
	14 Coordinate Systems
	14.1 The 2D Coordinate System
	14.2 The 3D Coordinate System
	14.2.1 Units of Measurement
	14.2.2 3D Coordinates
	14.2.3 Vectors
	14.2.4 Local Coordinate System, Relative Coordinate System
	14.2.5 World Coordinate System, Absolute Coordinate System
	14.2.6 Referential Axes, Referential
	14.2.7 Orientation
	14.2.8 Orientation and the Referential

	15 Transformations
	16 Matrix Operations
	17 Worlds and Levels, Places and Scenes
	18 Cameras and Rendering
	18.1 Depth of Field, Z buffering

	19 The Render Engine
	19.1 The Render Engine – CK2_3D
	19.2 Virtools Dev Rasterizers

	Part 4 - Understanding Virtools Dev
	20 Elements, Classes, and Object Oriented Design
	20.1 Object Oriented Design
	20.2 Inheritance
	20.3 Specialization
	20.4 Aggregation
	20.4.1 Run-time Aggregation, The Scene Hierarchy
	20.4.2 Sharing Elements

	20.5 Association

	21 The Elements of a Composition (CMO)
	21.1 The Behavioral Object (BeObject)
	21.2 The Level
	21.3 Scenes
	21.4 Places and Portals
	21.5 Abstract Elements
	21.5.1 Groups
	21.5.2 Arrays

	22 The Virtools Dev Process Loop
	22.1 Processing Behaviors
	22.2 Rendering

	23 The Behavioral Engine
	23.1 Behavior Loops
	23.2 Priority

	24 Behaviors and Scripts
	24.1 Behavior Building Block (BB)
	24.1.1 Interpreting a BB Symbol
	24.1.2 Behavior Input, bIn
	24.1.3 Behavior Output, bOut
	24.1.4 Behavior Link, bLink
	24.1.5 Parameter Input and Parameter Output
	24.1.6 Target Parameter
	24.1.7 C, S, and V
	24.1.8 Messages
	24.1.9 BB Processing

	24.2 Behavior Graph (BG)

	25 Parameters
	25.1 Parameter Types
	25.2 Parameter Input, pIn
	25.3 Parameter Output, pOut
	25.4 Parameter Link, pLink
	25.5 Local Parameter
	25.6 This
	25.7 Parameter Shortcuts

	26 Parameter Operations (paramOps)
	26.1 Parameter Notation
	26.2 paramOps and Behaviors
	26.3 Advanced paramOps
	26.3.1 Order of pIns
	26.3.2 Calculating a Value at a Specific Moment
	26.3.3 pTypes <Angle>, <Float>, and <Percentage>

	27 Attributes
	27.1 Attribute Shortcuts

	Part 5 - Authoring in Virtools Dev
	28 Quick Start
	28.1 Overview
	28.2 Organize Resources
	28.3 Plan the Content
	28.4 Import Media
	28.4.1 Importing the Scenery
	28.4.2 Exploring the Scene in Author Mode
	28.4.3 Adding a Character and Animations

	28.5 Arrange the Scene
	28.5.1 Adding a Camera
	28.5.2 Activating the Camera at the Start of the Scene
	28.5.3 Targeting the Camera

	28.6 Add Interactivity
	28.6.1 Controlling the Character
	28.6.2 Adding Keyboard Support

	28.7 Test
	28.7.1 Switching to Play Mode
	28.7.2 Returning to Author Mode

	28.8 Refine
	28.8.1 Making the Character Stay on the Floor
	28.8.2 Adding Simple Collision Management
	28.8.3 Declaring Objects as Obstacles

	28.9 Test Again
	28.9.1 Switching to Play Mode
	28.9.2 Returning to Author Mode

	28.10 Refine Again
	28.10.1 Dynamically Switching Cameras

	28.11 Test Again
	28.11.1 Switching to Play Mode
	28.11.2 Returning to Author Mode

	28.12 One Last Refinement
	28.13 Export Content
	28.13.1 Saving Your Hard Work
	28.13.2 Sharing Your Content With Others

	28.14 If You Encountered Any Difficulties...
	28.15 Congratulations

	29 Particles
	29.1 Introduction
	29.2 Emitters
	29.3 Particles
	29.4 Deflectors
	29.5 Interactors
	29.6 Configuring a Particle System
	29.7 StartCmos and FinishedCmos
	29.8 Exercise 1 - Particle System Basics
	29.8.1 Start
	29.8.2 Placing an Emitter
	29.8.3 First Few Particles
	29.8.4 Changing a Basic Parameter: Adding Color
	29.8.5 Texturing Particles
	29.8.6 Configuring Speed, Lifespan, and Size
	29.8.7 Variance and Other Parameters
	29.8.8 Conclusion

	29.9 Exercise 2 - Moving an Emitter and Adding Interactors
	29.9.1 Creating a Moving Emitter
	29.9.2 Adjusting Gravity
	29.9.3 Adding Wind
	29.9.4 Multiple Attributes on a Single 3D Frame
	29.9.5 Magnet and Other Attributes
	29.9.6 Conclusion

	29.10 Exercise 3 - Deflectors
	29.10.1 Start
	29.10.2 Creating a Deflector
	29.10.3 Placing and Resizing a Deflector
	29.10.4 Placing a Deflector on an Object
	29.10.5 Editing Particle System Attributes
	29.10.6 Conclusion

	29.11 Exercise 4 - Using Animated Textures with Particles
	29.12 Exercise 5 - Creating 3D Particles
	29.12.1 Conclusion

	29.13 Multiple Particle Systems
	29.14 Frame Rates with Particle Systems

	Part 6 - Appendix
	30 Glossary
	30.1 How to Use the Glossary
	30.2 Definitions and CKClasses
	30.3 Terms and Definitions

	31 Controlling the Orientation of an Element
	32 Example Transformations
	32.1 Translation
	32.2 Rotation
	32.2.1 About Local X Axis
	32.2.2 About Local Y Axis
	32.2.3 About Local Z Axis

	32.3 Scale

	Index

